{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T05:08:53Z","timestamp":1725167333395},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,7,25]],"date-time":"2022-07-25T00:00:00Z","timestamp":1658707200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Applied Earth Observation and Geoinformation"],"published-print":{"date-parts":[[2022,8]]},"DOI":"10.1016\/j.jag.2022.102940","type":"journal-article","created":{"date-parts":[[2022,7,30]],"date-time":"2022-07-30T13:33:31Z","timestamp":1659188011000},"page":"102940","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["DPCC-Net: Dual-perspective change contextual network for change detection in high-resolution remote sensing images"],"prefix":"10.1016","volume":"112","author":[{"given":"Qidi","family":"Shu","sequence":"first","affiliation":[]},{"given":"Jun","family":"Pan","sequence":"additional","affiliation":[]},{"given":"Zhuoer","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Mi","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"7","key":"10.1016\/j.jag.2022.102940_b0005","doi-asserted-by":"crossref","first-page":"1301","DOI":"10.1007\/s10514-018-9734-5","article-title":"Street-view change detection with deconvolutional networks","volume":"42","author":"Alcantarilla","year":"2018","journal-title":"Autonom. Rob."},{"issue":"1","key":"10.1016\/j.jag.2022.102940_b0010","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1109\/TGRS.2006.885408","article-title":"A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain","volume":"45","author":"Bovolo","year":"2006","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"14","key":"10.1016\/j.jag.2022.102940_b0015","doi-asserted-by":"crossref","first-page":"4434","DOI":"10.1080\/01431161.2011.648285","article-title":"Object-based change detection","volume":"33","author":"Chen","year":"2012","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2022.102940_b0020","first-page":"1","article-title":"Remote sensing image change detection with transformers","volume":"60","author":"Chen","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"10","key":"10.1016\/j.jag.2022.102940_b0025","doi-asserted-by":"crossref","first-page":"1662","DOI":"10.3390\/rs12101662","article-title":"A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection","volume":"12","author":"Chen","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2022.102940_b0030","series-title":"2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images","first-page":"1","article-title":"Deep siamese multi-scale convolutional network for change detection in multi-temporal VHR images","author":"Chen","year":"2019"},{"key":"10.1016\/j.jag.2022.102940_b0035","series-title":"Proceedings of the European conference on computer vision","first-page":"801","article-title":"Encoder-decoder with atrous separable convolution for semantic image segmentation","author":"Chen","year":"2018"},{"key":"10.1016\/j.jag.2022.102940_b0040","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.isprsjprs.2022.02.021","article-title":"FCCDN: Feature constraint network for VHR image change detection","volume":"187","author":"Chen","year":"2022","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2022.102940_b0045","series-title":"2018 25th IEEE International Conference on Image Processing (ICIP), IEEE","first-page":"4063","article-title":"Fully convolutional siamese networks for change detection","author":"Daudt","year":"2018"},{"issue":"16","key":"10.1016\/j.jag.2022.102940_b0050","doi-asserted-by":"crossref","first-page":"4823","DOI":"10.1080\/01431160801950162","article-title":"PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data","volume":"29","author":"Deng","year":"2008","journal-title":"Int. J. Remote Sens."},{"issue":"18","key":"10.1016\/j.jag.2022.102940_b0055","doi-asserted-by":"crossref","first-page":"3707","DOI":"10.3390\/rs13183707","article-title":"Looking for change? Roll the Dice and demand Attention","volume":"13","author":"Diakogiannis","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2022.102940_b0060","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.isprsjprs.2020.01.013","article-title":"ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data","volume":"162","author":"Diakogiannis","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2022.102940_b0065","first-page":"102591","article-title":"DSA-Net: A novel deeply supervised attention-guided network for building change detection in high-resolution remote sensing images","volume":"105","author":"Ding","year":"2021","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2022.102940_b0070","first-page":"1","article-title":"SNUNet-CD: A densely connected siamese network for change detection of VHR images","volume":"19","author":"Fang","year":"2021","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"5","key":"10.1016\/j.jag.2022.102940_b0075","doi-asserted-by":"crossref","first-page":"2658","DOI":"10.1109\/TGRS.2017.2650198","article-title":"Superpixel-based difference representation learning for change detection in multispectral remote sensing images","volume":"55","author":"Gong","year":"2017","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jag.2022.102940_b0080","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.jag.2022.102940_b0085","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.isprsjprs.2013.03.006","article-title":"Change detection from remotely sensed images: From pixel-based to object-based approaches","volume":"80","author":"Hussain","year":"2013","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"issue":"11","key":"10.1016\/j.jag.2022.102940_b0090","doi-asserted-by":"crossref","first-page":"1343","DOI":"10.3390\/rs11111343","article-title":"Building instance change detection from large-scale aerial images using convolutional neural networks and simulated samples","volume":"11","author":"Ji","year":"2019","journal-title":"Remote Sens."},{"issue":"3","key":"10.1016\/j.jag.2022.102940_b0095","doi-asserted-by":"crossref","first-page":"484","DOI":"10.3390\/rs12030484","article-title":"PGA-SiamNet: Pyramid feature-based attention-guided siamese network for remote sensing orthoimagery building change detection","volume":"12","author":"Jiang","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2022.102940_b0100","doi-asserted-by":"crossref","first-page":"565","DOI":"10.5194\/isprs-archives-XLII-2-565-2018","article-title":"Change detection in remote sensing images using conditional adversarial networks","volume":"XLII-2","author":"Lebedev","year":"2018","journal-title":"Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci."},{"issue":"7553","key":"10.1016\/j.jag.2022.102940_b0105","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.jag.2022.102940_b0110","first-page":"15","article-title":"Unsupervised change detection in VHR remote sensing imagery\u2013an object-based clustering approach in a dynamic urban environment","volume":"54","author":"Leichtle","year":"2017","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2022.102940_b0115","first-page":"1109","article-title":"Deep depthwise separable convolutional network for change detection in optical aerial images. IEEE J. Sel. Top. in Appl","volume":"13","author":"Liu","year":"2020","journal-title":"Earth Observ. Remote Sens."},{"key":"10.1016\/j.jag.2022.102940_b0120","doi-asserted-by":"crossref","first-page":"112308","DOI":"10.1016\/j.rse.2021.112308","article-title":"Change detection using deep learning approach with object-based image analysis","volume":"256","author":"Liu","year":"2021","journal-title":"Remote Sensing Environ."},{"key":"10.1016\/j.jag.2022.102940_b0125","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3431","article-title":"Fully convolutional networks for semantic segmentation","author":"Long","year":"2015"},{"issue":"4","key":"10.1016\/j.jag.2022.102940_b0130","doi-asserted-by":"crossref","first-page":"799","DOI":"10.1109\/LGRS.2011.2109697","article-title":"Improving change detection results of IR-MAD by eliminating strong changes","volume":"8","author":"Marpu","year":"2011","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.jag.2022.102940_b0135","article-title":"SCA-CDNet: a robust siamese correlation-and-attention-based change detection network for bitemporal VHR images","volume":"1\u201322","author":"Pang","year":"2021","journal-title":"Int. J. Remote Sens."},{"issue":"11","key":"10.1016\/j.jag.2022.102940_b0140","doi-asserted-by":"crossref","first-page":"1382","DOI":"10.3390\/rs11111382","article-title":"End-to-end change detection for high resolution satellite images using improved UNet++","volume":"11","author":"Peng","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2022.102940_b0145","series-title":"A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection","author":"Shi","year":"2021"},{"issue":"10","key":"10.1016\/j.jag.2022.102940_b0150","doi-asserted-by":"crossref","first-page":"1688","DOI":"10.3390\/rs12101688","article-title":"Change detection based on artificial intelligence: State-of-the-art and challenges","volume":"12","author":"Shi","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2022.102940_b0155","first-page":"102597","article-title":"SUACDNet: Attentional change detection network based on siamese U-shaped structure","volume":"105","author":"Song","year":"2021","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2022.102940_b0160","series-title":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support","article-title":"Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations","author":"Sudre","year":"2017"},{"key":"10.1016\/j.jag.2022.102940_b0165","first-page":"5998","article-title":"Attention is all you need","author":"Vaswani","year":"2017","journal-title":"Adv. Neural Inform. Process. Syst."},{"key":"10.1016\/j.jag.2022.102940_b0170","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/j.isprsjprs.2021.08.026","article-title":"An unsupervised domain adaptation approach for change detection and its application to deforestation mapping in tropical biomes","volume":"181","author":"Vega","year":"2021","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"issue":"3\u20134","key":"10.1016\/j.jag.2022.102940_b0175","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1016\/j.isprsjprs.2003.09.007","article-title":"Object-based classification of remote sensing data for change detection","volume":"58","author":"Walter","year":"2004","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2022.102940_b0180","first-page":"102348","article-title":"ADS-Net: An Attention-Based deeply supervised network for remote sensing image change detection","volume":"101","author":"Wang","year":"2021","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"issue":"1","key":"10.1016\/j.jag.2022.102940_b0185","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1007\/s10661-009-0798-8","article-title":"Comparison of remote sensing change detection techniques for assessing hurricane damage to forests","volume":"162","author":"Wang","year":"2010","journal-title":"Environ. Monit. Assess"},{"key":"10.1016\/j.jag.2022.102940_b0190","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"7794","article-title":"Non-local neural networks","author":"Wang","year":"2018"},{"key":"10.1016\/j.jag.2022.102940_b0195","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.rse.2011.12.004","article-title":"Landsat remote sensing approaches for monitoring long-term tree cover dynamics in semi-arid woodlands: Comparison of vegetation indices and spectral mixture analysis","volume":"119","author":"Yang","year":"2012","journal-title":"Rem. Sens. Environ."},{"key":"10.1016\/j.jag.2022.102940_b0200","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"173","article-title":"Object-contextual representations for semantic segmentation","author":"Yuan","year":"2020"},{"key":"10.1016\/j.jag.2022.102940_b0205","unstructured":"Yuan, Y., Huang, L., Guo, J., Zhang, C., Chen, X. and Wang, J. (2018). Ocnet: Object context network for scene parsing. arXiv preprint arXiv:.00916."},{"issue":"12","key":"10.1016\/j.jag.2022.102940_b0210","doi-asserted-by":"crossref","first-page":"5004","DOI":"10.1109\/TIP.2015.2474710","article-title":"Rayleigh-Rice mixture parameter estimation via EM algorithm for change detection in multispectral images","volume":"24","author":"Zanetti","year":"2015","journal-title":"IEEE Trans. Image Process."},{"issue":"10","key":"10.1016\/j.jag.2022.102940_b0215","doi-asserted-by":"crossref","first-page":"1845","DOI":"10.1109\/LGRS.2017.2738149","article-title":"Change detection based on deep siamese convolutional network for optical aerial images","volume":"14","author":"Zhan","year":"2017","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.jag.2022.102940_b0220","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.isprsjprs.2020.06.003","article-title":"A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images","volume":"166","author":"Zhang","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2022.102940_b0225","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"548","article-title":"Co-occurrent features in semantic segmentation","author":"Zhang","year":"2019"},{"issue":"10","key":"10.1016\/j.jag.2022.102940_b0230","doi-asserted-by":"crossref","first-page":"7232","DOI":"10.1109\/TGRS.2020.2981051","article-title":"A feature difference convolutional neural network-based change detection method","volume":"58","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"10.1016\/j.jag.2022.102940_b0235","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1109\/LGRS.2017.2763182","article-title":"Object-based change detection for VHR images based on multiscale uncertainty analysis","volume":"15","author":"Zhang","year":"2017","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.jag.2022.102940_b0240","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2881","article-title":"Pyramid scene parsing network","author":"Zhao","year":"2017"},{"key":"10.1016\/j.jag.2022.102940_b0245","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.isprsjprs.2021.03.005","article-title":"CLNet: Cross-layer convolutional neural network for change detection in optical remote sensing imagery","volume":"175","author":"Zheng","year":"2021","journal-title":"ISPRS J. Photogramm. Remote Sens."}],"container-title":["International Journal of Applied Earth Observation and Geoinformation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569843222001376?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569843222001376?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,25]],"date-time":"2024-05-25T04:37:16Z","timestamp":1716611836000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1569843222001376"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,8]]},"references-count":49,"alternative-id":["S1569843222001376"],"URL":"https:\/\/doi.org\/10.1016\/j.jag.2022.102940","relation":{},"ISSN":["1569-8432"],"issn-type":[{"value":"1569-8432","type":"print"}],"subject":[],"published":{"date-parts":[[2022,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"DPCC-Net: Dual-perspective change contextual network for change detection in high-resolution remote sensing images","name":"articletitle","label":"Article Title"},{"value":"International Journal of Applied Earth Observation and Geoinformation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jag.2022.102940","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"102940"}}