{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:54:44Z","timestamp":1726408484155},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,3,31]],"date-time":"2022-03-31T00:00:00Z","timestamp":1648684800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Applied Earth Observation and Geoinformation"],"published-print":{"date-parts":[[2022,5]]},"DOI":"10.1016\/j.jag.2022.102768","type":"journal-article","created":{"date-parts":[[2022,4,27]],"date-time":"2022-04-27T18:28:54Z","timestamp":1651084134000},"page":"102768","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":17,"special_numbering":"C","title":["Multi-scale attention integrated hierarchical networks for high-resolution building footprint extraction"],"prefix":"10.1016","volume":"109","author":[{"given":"Tang","family":"Liu","sequence":"first","affiliation":[]},{"given":"Ling","family":"Yao","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Qin","sequence":"additional","affiliation":[]},{"given":"Ning","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Hou","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Fan","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Chenghu","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jag.2022.102768_b0005","doi-asserted-by":"crossref","unstructured":"Moghaddam, H.A, Mohammadzadeh, H.A., 2010. Automatic urban building boundary extraction from high resolution aerial images using an innovative model of active contours. Int. J. Appl. Earth Observ. Geoinform., vol. 12, pp. 150\u2013157. 10\/dvwbfj.","DOI":"10.1016\/j.jag.2010.02.001"},{"key":"10.1016\/j.jag.2022.102768_b0015","doi-asserted-by":"crossref","unstructured":"Chen, H., Yin, L., Ma, L., 2014. Research on road information extraction from high resolution imagery based on global precedence. In: 2014 Third International Workshop on Earth Observation and Remote Sensing Applications (EORSA). Presented at the 2014 Third International Workshop on Earth Observation and Remote Sensing Applications (EORSA), pp. 151\u2013155. 10\/gn7g2m.","DOI":"10.1109\/EORSA.2014.6927868"},{"key":"10.1016\/j.jag.2022.102768_b0020","doi-asserted-by":"crossref","unstructured":"Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y., 2017. Deformable Convolutional Networks. In: Presented at the Proceedings of the IEEE International Conference on Computer Vision, pp. 764\u2013773. 10.48550\/arXiv.1703.06211.","DOI":"10.1109\/ICCV.2017.89"},{"key":"10.1016\/j.jag.2022.102768_b0025","doi-asserted-by":"crossref","unstructured":"Ding, L., Tang, H., Bruzzone, L., 2021. LANet: Local Attention Embedding to Improve the Semantic Segmentation of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens., 59, 426\u2013435. 10\/ghm4tc.","DOI":"10.1109\/TGRS.2020.2994150"},{"key":"10.1016\/j.jag.2022.102768_b0030","doi-asserted-by":"crossref","unstructured":"El Jurdi, R., Petitjean, C., Honeine, P., Abdallah, F., 2021. CoordConv-Unet: Investigating CoordConv for Organ Segmentation. IRBM 42, 415\u2013423. 10\/gn3tdt.","DOI":"10.1016\/j.irbm.2021.03.002"},{"key":"10.1016\/j.jag.2022.102768_b0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112589","article-title":"Deep building footprint update network: A semi-supervised method for updating existing building footprint from bi-temporal remote sensing images","volume":"264","author":"Guo","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2022.102768_b0045","doi-asserted-by":"crossref","first-page":"1400","DOI":"10.3390\/rs12091400","article-title":"Building Extraction Based on U-Net with an Attention Block and Multiple Losses","volume":"12","author":"Guo","year":"2020","journal-title":"Remote Sensing"},{"issue":"5","key":"10.1016\/j.jag.2022.102768_bib206","doi-asserted-by":"crossref","first-page":"3368","DOI":"10.1021\/acs.est.0c05642","article-title":"High-Resolution Maps of Material Stocks in Buildings and Infrastructures in Austria and Germany","volume":"55","author":"Haberl","year":"2021","journal-title":"Environmental Science & Technology"},{"key":"10.1016\/j.jag.2022.102768_b0050","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1038\/d41586-020-02830-3","article-title":"Satellites could soon map every tree on Earth","volume":"587","author":"Hanan","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.jag.2022.102768_b0055","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: 2015 IEEE International Conference on Computer Vision (ICCV). Presented at the 2015 IEEE International Conference on Computer Vision (ICCV), IEEE, Santiago, Chile, pp. 1026\u20131034. 10.1109\/ICCV.2015.123.","DOI":"10.1109\/ICCV.2015.123"},{"key":"10.1016\/j.jag.2022.102768_b0060","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely Connected Convolutional Networks. In: Presented at the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261\u20132269. 10\/gfhw3n.","DOI":"10.1109\/CVPR.2017.243"},{"key":"10.1016\/j.jag.2022.102768_b0065","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.rse.2017.05.001","article-title":"Multi-level monitoring of subtle urban changes for the megacities of China using high-resolution multi-view satellite imagery","volume":"196","author":"Huang","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2022.102768_b0070","doi-asserted-by":"crossref","unstructured":"Jegou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y., 2017. The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. In: Presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 11\u201319. 10.48550\/arXiv.1611.09326.","DOI":"10.1109\/CVPRW.2017.156"},{"key":"10.1016\/j.jag.2022.102768_b0075","doi-asserted-by":"crossref","first-page":"3308","DOI":"10.1080\/01431161.2018.1528024","article-title":"A scale robust convolutional neural network for automatic building extraction from aerial and satellite imagery","volume":"40","author":"Ji","year":"2019","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2022.102768_b0080","doi-asserted-by":"crossref","DOI":"10.1038\/506007a","article-title":"China must protect high-quality arable land","volume":"506","author":"Kong","year":"2014","journal-title":"Nature"},{"key":"10.1016\/j.jag.2022.102768_b0085","doi-asserted-by":"crossref","unstructured":"Li, E., Femiani, J., Xu, S., Zhang, X., Wonka, P., 2015. Robust Rooftop Extraction From Visible Band Images Using Higher Order CRF. IEEE Transactions on Geoscience and Remote Sensing 53, 4483\u20134495. 10\/gn7gw4.","DOI":"10.1109\/TGRS.2015.2400462"},{"key":"10.1016\/j.jag.2022.102768_b0090","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2020.111705","article-title":"Developing a method to estimate building height from Sentinel-1 data","volume":"240","author":"Li","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2022.102768_b0095","first-page":"1708.02002","author":"Lin","year":"2018","journal-title":"Focal Loss for Dense Object Detection."},{"key":"10.1016\/j.jag.2022.102768_b0100","unstructured":"Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., Han, J., 2021. On the Variance of the Adaptive Learning Rate and Beyond. arXiv:1908.03265 [cs]. 10.48550\/arXiv.1908.03265."},{"key":"10.1016\/j.jag.2022.102768_b0105","article-title":"Building Footprint Extraction from High-Resolution Images via Spatial Residual Inception Convolutional Neural Network","volume":"11","author":"Liu","year":"2019","journal-title":"Remote Sensing"},{"key":"10.1016\/j.jag.2022.102768_b0110","first-page":"1807.03247","author":"Liu","year":"2018","journal-title":"An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution."},{"key":"10.1016\/j.jag.2022.102768_b0115","doi-asserted-by":"crossref","unstructured":"Luo, J., Ming, D., Shen, Z., Wang, M., Sheng, H., 2007. Multi-scale information extraction from high resolution remote sensing imagery and region partition methods based on GMRF-SVM. International Journal of Remote Sensing - INT J REMOTE SENS 28, 3395\u20133412. 10\/d2rrmc.","DOI":"10.1080\/01431160500258974"},{"key":"10.1016\/j.jag.2022.102768_b0120","unstructured":"Microsoft.,2021. Open dataset of machine extracted buildings in Uganda and Tanzania. https:\/\/github.com\/microsoft\/Uganda-Tanzania-Building-Footprints."},{"key":"10.1016\/j.jag.2022.102768_b0125","doi-asserted-by":"crossref","unstructured":"Milletari, F., Navab, N., Ahmadi, S.-A., 2016. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). Presented at the 2016 Fourth International Conference on 3D Vision (3DV), pp. 565\u2013571. 10\/gfwqt4.","DOI":"10.1109\/3DV.2016.79"},{"key":"10.1016\/j.jag.2022.102768_b0130","doi-asserted-by":"crossref","unstructured":"Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M., 2019. BASNet: Boundary-Aware Salient Object Detection. Presented at the Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7479\u20137489. 10.1109\/CVPR.2019.00766.","DOI":"10.1109\/CVPR.2019.00766"},{"key":"10.1016\/j.jag.2022.102768_b0135","doi-asserted-by":"crossref","unstructured":"Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., Prabhat, 2019. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195\u2013204. 10.1038\/s41586-019-0912-1.","DOI":"10.1038\/s41586-019-0912-1"},{"key":"10.1016\/j.jag.2022.102768_b0140","first-page":"2107.12283","author":"Sirko","year":"2021","journal-title":"Continental-Scale Building Detection from High Resolution Satellite Imagery."},{"key":"10.1016\/j.jag.2022.102768_b0145","doi-asserted-by":"crossref","unstructured":"Wang, J., Yang, X., Qin, X., Ye, X., Qin, Q., 2015. An Efficient Approach for Automatic Rectangular Building Extraction From Very High Resolution Optical Satellite Imagery. IEEE Geoscience and Remote Sensing Letters 12, 487\u2013491. 10\/gnvmtd.","DOI":"10.1109\/LGRS.2014.2347332"},{"key":"10.1016\/j.jag.2022.102768_b0160","doi-asserted-by":"crossref","unstructured":"Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., 2004. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13, 600\u2013612. 10\/c7sr27.","DOI":"10.1109\/TIP.2003.819861"},{"key":"10.1016\/j.jag.2022.102768_b0165","doi-asserted-by":"crossref","first-page":"407","DOI":"10.3390\/rs10030407","article-title":"Automatic Building Segmentation of Aerial Imagery Using Multi-Constraint Fully Convolutional Networks","volume":"10","author":"Wu","year":"2018","journal-title":"Remote Sensing"},{"key":"10.1016\/j.jag.2022.102768_b0170","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TGRS.2022.3157870","article-title":"Satellite Video Super-Resolution via Multiscale Deformable Convolution Alignment and Temporal Grouping Projection","volume":"60","author":"Xiao","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jag.2022.102768_b0175","doi-asserted-by":"crossref","first-page":"101972","DOI":"10.1109\/ACCESS.2021.3097630","article-title":"HA U-Net: Improved Model for Building Extraction From High Resolution Remote Sensing Imagery","volume":"9","author":"Xu","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.jag.2022.102768_b0180","doi-asserted-by":"crossref","unstructured":"Zhang, G., Lei, T., Cui, Y., Jiang, P., 2019. A Dual-Path and Lightweight Convolutional Neural Network for High-Resolution Aerial Image Segmentation. ISPRS International Journal of Geo-Information 8, 582. 10\/gn3td5.","DOI":"10.3390\/ijgi8120582"},{"key":"10.1016\/j.jag.2022.102768_b0185","doi-asserted-by":"crossref","unstructured":"Zhang, Z., Liu, Q., Wang, Y., 2018. Road Extraction by Deep Residual U-Net. IEEE Geoscience and Remote Sensing Letters 15, 749\u2013753. 10\/gdgsb2.","DOI":"10.1109\/LGRS.2018.2802944"},{"key":"10.1016\/j.jag.2022.102768_b0195","doi-asserted-by":"crossref","first-page":"6169","DOI":"10.1109\/TGRS.2020.3026051","article-title":"MAP-Net: Multiple Attending Path Neural Network for Building Footprint Extraction From Remote Sensed Imagery","volume":"59","author":"Zhu","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jag.2022.102768_b0200","doi-asserted-by":"crossref","unstructured":"Zhu, Qiqi, Zhang, Y., Wang, L., Zhong, Y., Guan, Q., Lu, X., Zhang, L., Li, D., 2021. A Global Context-aware and Batch-independent Network for road extraction from VHR satellite imagery. ISPRS J. Photogram. Remote Sens., 175, 353\u2013365. 10\/gjwtpz.","DOI":"10.1016\/j.isprsjprs.2021.03.016"},{"key":"10.1016\/j.jag.2022.102768_b0205","doi-asserted-by":"crossref","unstructured":"Zhu, W., Huang, Y., Zeng, L., Chen, X., Liu, Y., Qian, Z., Du, N., Fan, W., Xie, X., 2019. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med. Phys., vol. 46, pp. 576\u2013589. 10\/gfz976.","DOI":"10.1002\/mp.13300"}],"container-title":["International Journal of Applied Earth Observation and Geoinformation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0303243422000940?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0303243422000940?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,10]],"date-time":"2023-03-10T23:07:32Z","timestamp":1678489652000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0303243422000940"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,5]]},"references-count":37,"alternative-id":["S0303243422000940"],"URL":"https:\/\/doi.org\/10.1016\/j.jag.2022.102768","relation":{},"ISSN":["1569-8432"],"issn-type":[{"value":"1569-8432","type":"print"}],"subject":[],"published":{"date-parts":[[2022,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multi-scale attention integrated hierarchical networks for high-resolution building footprint extraction","name":"articletitle","label":"Article Title"},{"value":"International Journal of Applied Earth Observation and Geoinformation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jag.2022.102768","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"102768"}}