{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,30]],"date-time":"2024-07-30T12:32:28Z","timestamp":1722342748344},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,5,26]],"date-time":"2021-05-26T00:00:00Z","timestamp":1621987200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/100012542","name":"Sichuan Province Science and Technology Support Program","doi-asserted-by":"publisher","award":["2019YFG0187","41101366"],"id":[{"id":"10.13039\/100012542","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["2019YFG0187","41101366"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Applied Earth Observation and Geoinformation"],"published-print":{"date-parts":[[2021,10]]},"DOI":"10.1016\/j.jag.2021.102381","type":"journal-article","created":{"date-parts":[[2021,6,13]],"date-time":"2021-06-13T11:20:17Z","timestamp":1623583217000},"page":"102381","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":12,"special_numbering":"C","title":["A spatial case-based reasoning method for regional landslide risk assessment"],"prefix":"10.1016","volume":"102","author":[{"given":"Zheng","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Jianhua","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Kaihang","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Huawei","family":"Xie","sequence":"additional","affiliation":[]},{"given":"Xianxia","family":"Gan","sequence":"additional","affiliation":[]},{"given":"He","family":"Xu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"18","key":"10.1016\/j.jag.2021.102381_b0005","doi-asserted-by":"crossref","first-page":"560","DOI":"10.1007\/s12665-019-8562-z","article-title":"A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling","volume":"78","author":"Abedini","year":"2019","journal-title":"Environ. Earth Sci."},{"issue":"1","key":"10.1016\/j.jag.2021.102381_b0010","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1020281327116","article-title":"An Introduction to MCMC for Machine Learning","volume":"50","author":"Andrieu","year":"2003","journal-title":"Mach. Learn."},{"issue":"3","key":"10.1016\/j.jag.2021.102381_b0015","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1007\/s12145-018-0335-9","article-title":"A comparison of slope units and grid cells as mapping units for landslide susceptibility assessment","volume":"11","author":"Ba","year":"2018","journal-title":"Earth Sci. Inform."},{"key":"10.1016\/j.jag.2021.102381_b0020","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/j.scitotenv.2016.10.025","article-title":"Suitability estimation for urban development using multi-hazard assessment map","volume":"575","author":"Bathrellos","year":"2017","journal-title":"Sci. Total Environ."},{"issue":"2","key":"10.1016\/j.jag.2021.102381_b0025","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1111\/tgis.12316","article-title":"A geospatial case-based reasoning model for oil-gas reservoir evaluation","volume":"22","author":"Chen","year":"2018","journal-title":"Trans. GIS"},{"issue":"5","key":"10.1016\/j.jag.2021.102381_b0030","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.catena.2018.01.012","article-title":"GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method","volume":"164","author":"Chen","year":"2018","journal-title":"Catena"},{"issue":"12","key":"10.1016\/j.jag.2021.102381_b0035","article-title":"Integrating a Bayesian semantic similarity approach into CBR for knowledge reuse in Community Question Answering","volume":"185","author":"Chergui","year":"2019","journal-title":"Knowledge-Based Syst."},{"issue":"1","key":"10.1016\/j.jag.2021.102381_b0040","doi-asserted-by":"crossref","first-page":"1052","DOI":"10.1080\/19475705.2020.1774427","article-title":"Spatial case revision in case-based reasoning for risk assessment of geological disasters","volume":"11","author":"Deng","year":"2020","journal-title":"Geomat. Nat. Hazards Risk"},{"issue":"4","key":"10.1016\/j.jag.2021.102381_b0045","doi-asserted-by":"crossref","first-page":"4318","DOI":"10.3390\/rs70404318","article-title":"Automatic case-based reasoning approach for landslide detection: integration of object-oriented image analysis and a genetic algorithm","volume":"7","author":"Dou","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2021.102381_b0050","series-title":"Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools","article-title":"TXT-tool 1.081-6.1 a comparative study of the binary logistic regression (BLR) and artificial neural network (ANN) models for GIS-based spatial predicting landslides at a regional scale","author":"Dou","year":"2018"},{"issue":"3","key":"10.1016\/j.jag.2021.102381_b0055","doi-asserted-by":"crossref","first-page":"641","DOI":"10.1007\/s10346-019-01286-5","article-title":"Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan","volume":"17","author":"Dou","year":"2020","journal-title":"Landslides"},{"issue":"9","key":"10.1016\/j.jag.2021.102381_b0060","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.knosys.2012.03.002","article-title":"Integrating spatial relations into case-based reasoning to solve geographic problems","volume":"33","author":"Du","year":"2012","journal-title":"Knowledge-Based Syst."},{"issue":"8","key":"10.1016\/j.jag.2021.102381_b0065","doi-asserted-by":"crossref","first-page":"5745","DOI":"10.1016\/j.eswa.2010.02.035","article-title":"A case-based reasoning approach for land use change prediction","volume":"37","author":"Du","year":"2010","journal-title":"Expert Syst. Appl."},{"issue":"2","key":"10.1016\/j.jag.2021.102381_b0070","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2018RG000626","article-title":"Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts","volume":"57","author":"Fan","year":"2019","journal-title":"Rev. Geophys."},{"issue":"2","key":"10.1016\/j.jag.2021.102381_b0075","doi-asserted-by":"crossref","first-page":"196","DOI":"10.3390\/rs11020196","article-title":"Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection","volume":"11","author":"Ghorbanzadeh","year":"2019","journal-title":"Remote Sens."},{"issue":"5","key":"10.1016\/j.jag.2021.102381_b0080","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.scitotenv.2019.01.329","article-title":"Landslide spatial modelling using novel bivariate statistical based nave bayes, rbf classifier, and rbf network machine learning algorithms","volume":"663","author":"He","year":"2019","journal-title":"Sci. Total Environ."},{"issue":"8","key":"10.1016\/j.jag.2021.102381_b0085","article-title":"Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping","volume":"191","author":"Huang","year":"2020","journal-title":"Catena"},{"issue":"1","key":"10.1016\/j.jag.2021.102381_b0090","doi-asserted-by":"crossref","first-page":"508","DOI":"10.1016\/j.geomorph.2015.10.030","article-title":"Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model","volume":"253","author":"Hussin","year":"2016","journal-title":"Geomorphology"},{"issue":"12","key":"10.1016\/j.jag.2021.102381_b0095","doi-asserted-by":"crossref","first-page":"2501","DOI":"10.5194\/nhess-16-2501-2016","article-title":"Landslide forecasting and factors influencing predictability","volume":"16","author":"Intrieri","year":"2016","journal-title":"Nat. Hazards Earth Syst. Sci."},{"issue":"7","key":"10.1016\/j.jag.2021.102381_b0100","doi-asserted-by":"crossref","first-page":"124087","DOI":"10.1109\/ACCESS.2019.2927169","article-title":"A Dilated CNN Model for Image Classification","volume":"7","author":"Lei","year":"2019","journal-title":"IEEE Access"},{"issue":"3","key":"10.1016\/j.jag.2021.102381_b0105","doi-asserted-by":"crossref","first-page":"1107","DOI":"10.3390\/app10031107","article-title":"Spatial proximity-based geographically weighted regression model for landslide susceptibility assessment: a case study of Qingchuan area, China","volume":"10","author":"Li","year":"2020","journal-title":"Appl. Sci."},{"issue":"5","key":"10.1016\/j.jag.2021.102381_b0110","doi-asserted-by":"crossref","first-page":"1035","DOI":"10.2355\/isijinternational.55.1035","article-title":"A two-step case-based reasoning method based on attributes reduction for predicting the endpoint phosphorus content","volume":"55","author":"Liang","year":"2015","journal-title":"ISIJ Int."},{"issue":"10","key":"10.1016\/j.jag.2021.102381_b0115","first-page":"4001","article-title":"A similarity measurement method for multiple information data of landslide","volume":"40","author":"Liu","year":"2019","journal-title":"Rock. Soil Mech."},{"issue":"8","key":"10.1016\/j.jag.2021.102381_b0120","doi-asserted-by":"crossref","first-page":"7029","DOI":"10.1016\/j.eswa.2012.01.044","article-title":"Adaptation methodology of CBR for environmental emergency preparedness system based on an improved genetic algorithm","volume":"39","author":"Liao","year":"2012","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.jag.2021.102381_b0125","doi-asserted-by":"crossref","first-page":"60","DOI":"10.14257\/astl.2014.52.10","article-title":"Network method for engineering geological disaster risk assessment and prediction of railway","volume":"52","author":"Lv","year":"2014","journal-title":"Adv. Sci. Technol. Lett."},{"issue":"3","key":"10.1016\/j.jag.2021.102381_b0130","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1007\/s10032-018-0308-z","article-title":"Integrating scattering feature maps with convolutional neural networks for Malayalam handwritten character recognition","volume":"21","author":"Manjusha","year":"2018","journal-title":"Int. J. Doc. Anal. Recognit."},{"key":"10.1016\/j.jag.2021.102381_b0135","first-page":"143","article-title":"A nation-wide system for landslide mapping and risk management in italy: the second not-ordinary plan of environmental remote sensing","volume":"63","author":"Martire","year":"2017","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"issue":"9","key":"10.1016\/j.jag.2021.102381_b0140","doi-asserted-by":"crossref","first-page":"2876","DOI":"10.1109\/TNNLS.2018.2890334","article-title":"Morphological Convolutional Neural Network Architecture for Digit Recognition","volume":"30","author":"Mellouli","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"7","key":"10.1016\/j.jag.2021.102381_b0145","doi-asserted-by":"crossref","first-page":"268","DOI":"10.3390\/ijgi7070268","article-title":"Landslide Susceptibility Assessment at Mila Basin (Algeria): A Comparative Assessment of Prediction Capability of Advanced Machine Learning Methods","volume":"7","author":"Merghadi","year":"2018","journal-title":"ISPRS Int. J. Geoinf."},{"issue":"4","key":"10.1016\/j.jag.2021.102381_b0150","doi-asserted-by":"crossref","first-page":"2865","DOI":"10.1007\/s10064-018-1281-y","article-title":"A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling","volume":"78","author":"Pham","year":"2019","journal-title":"Bull. Eng. Geol. Environ."},{"key":"10.1016\/j.jag.2021.102381_b0155","first-page":"1","article-title":"Landslide susceptibility modeling using different artificial intelligence methods: a case study at Muong Lay district, Vietnam","volume":"9","author":"Phong","year":"2019","journal-title":"Geocarto Int."},{"issue":"2","key":"10.1016\/j.jag.2021.102381_b0160","doi-asserted-by":"crossref","first-page":"1189","DOI":"10.1007\/s11069-014-1065-z","article-title":"Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek, South Korea","volume":"72","author":"Pradhan","year":"2014","journal-title":"Nat. Hazards"},{"issue":"1","key":"10.1016\/j.jag.2021.102381_b0165","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1007\/s10230-016-0414-4","article-title":"Effects of Coal Mining on Shallow Water Resources in Semiarid Regions: A Case Study in the Shennan Mining Area, Shaanxi, China","volume":"36","author":"Qiao","year":"2017","journal-title":"Mine Water Environ."},{"issue":"2","key":"10.1016\/j.jag.2021.102381_b0170","first-page":"307","article-title":"Pattern analysis of loess landslides and their scale dependency","volume":"37","author":"Qiu","year":"2017","journal-title":"Quat. Sci."},{"issue":"5","key":"10.1016\/j.jag.2021.102381_b0175","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.earscirev.2018.03.001","article-title":"A review of statistically-based landslide susceptibility models","volume":"180","author":"Reichenbach","year":"2018","journal-title":"Earth-Sci. Rev."},{"issue":"3","key":"10.1016\/j.jag.2021.102381_b0180","article-title":"Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment","volume":"186","author":"Sameen","year":"2020","journal-title":"Catena"},{"key":"10.1016\/j.jag.2021.102381_b0185","first-page":"399","article-title":"An evaluation of SVM using polygon-based random sampling in landslide Susceptibility mapping: The Candir catchment area (western Antalya, Turkey)","volume":"26","author":"San","year":"2014","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2021.102381_b0190","series-title":"Scripts, Plans, Goals and Understanding: An Inquiry into Human Knowledge Structures","author":"Schank","year":"1977"},{"issue":"24","key":"10.1016\/j.jag.2021.102381_b0195","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.ecolmodel.2019.06.002","article-title":"Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data","volume":"406","author":"Schratz","year":"2019","journal-title":"Ecol. Model."},{"issue":"4","key":"10.1016\/j.jag.2021.102381_b0200","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.catena.2013.11.014","article-title":"Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models","volume":"115","author":"Shahabi","year":"2014","journal-title":"Catena"},{"issue":"2","key":"10.1016\/j.jag.2021.102381_b0205","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1007\/s12665-018-8003-4","article-title":"Multi-hazard assessment modeling via multi-criteria analysis and GIS: A case study","volume":"78","author":"Skilodimou","year":"2019","journal-title":"Environ. Earth Sci."},{"issue":"9","key":"10.1016\/j.jag.2021.102381_b0215","doi-asserted-by":"crossref","first-page":"637","DOI":"10.1007\/s00704-018-2628-9","article-title":"A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data","volume":"137","author":"Tehrany","year":"2019","journal-title":"Theor. Appl. Climatol."},{"issue":"14","key":"10.1016\/j.jag.2021.102381_b0220","doi-asserted-by":"crossref","first-page":"1101","DOI":"10.1007\/s12665-016-5919-4","article-title":"GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks","volume":"75","author":"Tien Bui","year":"2016","journal-title":"Environ. Earth Sci."},{"issue":"5","key":"10.1016\/j.jag.2021.102381_b0225","article-title":"Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment","volume":"188","author":"Tien Bui","year":"2020","journal-title":"Catena"},{"issue":"2","key":"10.1016\/j.jag.2021.102381_b0230","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1007\/s10346-015-0557-6","article-title":"Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree","volume":"13","author":"Tien Bui","year":"2016","journal-title":"Landslides"},{"key":"10.1016\/j.jag.2021.102381_b0235","doi-asserted-by":"crossref","unstructured":"Wang, F., Huang, Q., 2010. The importance of spatial-temporal issues for case-based reasoning in disaster management. In: Porc. GeoInf. 2010. Beijing, China, pp. 1\u20135.","DOI":"10.1109\/GEOINFORMATICS.2010.5567639"},{"issue":"5","key":"10.1016\/j.jag.2021.102381_b0240","doi-asserted-by":"crossref","first-page":"975","DOI":"10.1016\/j.scitotenv.2019.02.263","article-title":"Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China","volume":"666","author":"Wang","year":"2019","journal-title":"Sci. Total Environ."},{"issue":"21","key":"10.1016\/j.jag.2021.102381_b0245","doi-asserted-by":"crossref","first-page":"8006","DOI":"10.1016\/j.eswa.2015.06.027","article-title":"Trustworthiness evaluation and retrieval-based revision method for case-based reasoning classifiers","volume":"42","author":"Yan","year":"2015","journal-title":"Expert Syst. Appl."},{"issue":"9","key":"10.1016\/j.jag.2021.102381_b0250","doi-asserted-by":"crossref","first-page":"5408","DOI":"10.1109\/TGRS.2018.2815613","article-title":"Hyperspectral Image Classification with Deep Learning Models","volume":"56","author":"Yang","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jag.2021.102381_b0255","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1016\/j.engappai.2017.07.015","article-title":"An attribute difference revision method in case-based reasoning and its application","volume":"65","author":"Yan","year":"2017","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"2","key":"10.1016\/j.jag.2021.102381_b0260","first-page":"134","article-title":"A case similarity calculation model based on the urban flooding case with stratified data characteristics","volume":"6","author":"Zhu","year":"2018","journal-title":"J. Syst. Sci. Inf."},{"key":"10.1016\/j.jag.2021.102381_b0265","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.engappai.2014.11.006","article-title":"An integrated feature selection and cluster analysis techniques for case-based reasoning","volume":"39","author":"Zhu","year":"2015","journal-title":"Eng. Appl. Artif. Intell."}],"container-title":["International Journal of Applied Earth Observation and Geoinformation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S030324342100088X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S030324342100088X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,5,27]],"date-time":"2022-05-27T03:26:52Z","timestamp":1653622012000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S030324342100088X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10]]},"references-count":52,"alternative-id":["S030324342100088X"],"URL":"https:\/\/doi.org\/10.1016\/j.jag.2021.102381","relation":{},"ISSN":["1569-8432"],"issn-type":[{"value":"1569-8432","type":"print"}],"subject":[],"published":{"date-parts":[[2021,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A spatial case-based reasoning method for regional landslide risk assessment","name":"articletitle","label":"Article Title"},{"value":"International Journal of Applied Earth Observation and Geoinformation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jag.2021.102381","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"102381"}}