{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T09:02:09Z","timestamp":1726045329356},"reference-count":73,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,10,1]],"date-time":"2020-10-01T00:00:00Z","timestamp":1601510400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2020,5,25]],"date-time":"2020-05-25T00:00:00Z","timestamp":1590364800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"China Natural Science Foundation","doi-asserted-by":"crossref","award":["41701392","41730107","41401399"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100004739","name":"Youth Innovation Promotion Association Chinese Academy of Sciences","doi-asserted-by":"crossref","award":["2018084"],"id":[{"id":"10.13039\/501100004739","id-type":"DOI","asserted-by":"crossref"}]},{"name":"China\u2019s Special Funds for Major State Basic Research Project","award":["2013CB733405"]},{"name":"100 Talents Program of the Chinese Academy of Sciences"},{"name":"National Key R&D Program of China","award":["2018YFC0506901"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Applied Earth Observation and Geoinformation"],"published-print":{"date-parts":[[2020,10]]},"DOI":"10.1016\/j.jag.2020.102163","type":"journal-article","created":{"date-parts":[[2020,6,6]],"date-time":"2020-06-06T15:49:59Z","timestamp":1591458599000},"page":"102163","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":67,"special_numbering":"C","title":["High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data"],"prefix":"10.1016","volume":"92","author":[{"given":"Wang","family":"Li","sequence":"first","affiliation":[]},{"given":"Zheng","family":"Niu","sequence":"additional","affiliation":[]},{"given":"Rong","family":"Shang","sequence":"additional","affiliation":[]},{"given":"Yuchu","family":"Qin","sequence":"additional","affiliation":[]},{"given":"Li","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Hanyue","family":"Chen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jag.2020.102163_bib0005","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.isprsjprs.2014.11.007","article-title":"Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm","volume":"101","author":"Ahmed","year":"2015","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2020.102163_bib0010","first-page":"105","article-title":"Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models","volume":"65","author":"Alexander","year":"2018","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2020.102163_bib0015","first-page":"192","article-title":"Monitoring the structure of forest restoration plantations with a drone-lidar system","volume":"79","author":"Almeida","year":"2019","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2020.102163_bib0020","doi-asserted-by":"crossref","first-page":"296","DOI":"10.21105\/joss.00296","article-title":"kerasR: R Interface to the Keras Deep Learning Library","volume":"2","author":"Arnold","year":"2017","journal-title":"J. Open Source Software"},{"key":"10.1016\/j.jag.2020.102163_bib0025","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/j.biocon.2017.10.020","article-title":"Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo","volume":"217","author":"Asner","year":"2018","journal-title":"Biol. Conserv."},{"key":"10.1016\/j.jag.2020.102163_bib0030","doi-asserted-by":"crossref","first-page":"16738","DOI":"10.1073\/pnas.1004875107","article-title":"High-resolution forest carbon stocks and emissions in the Amazon","volume":"107","author":"Asner","year":"2010","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.jag.2020.102163_bib0035","doi-asserted-by":"crossref","DOI":"10.1117\/1.JRS.11.042609","article-title":"Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community","volume":"11","author":"Ball","year":"2017","journal-title":"J. Appl. Remote Sens."},{"key":"10.1016\/j.jag.2020.102163_bib0040","series-title":"Copernicus Global Land Service: Land Cover 100m: Epoch 2015","author":"Buchhorn","year":"2019"},{"key":"10.1016\/j.jag.2020.102163_bib0045","doi-asserted-by":"crossref","first-page":"2094","DOI":"10.1109\/JSTARS.2014.2329330","article-title":"Deep learning-based classification of hyperspectral data","volume":"7","author":"Chen","year":"2014","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.jag.2020.102163_bib0050","doi-asserted-by":"crossref","first-page":"1865","DOI":"10.1109\/JPROC.2017.2675998","article-title":"Remote sensing image scene classification: benchmark and state of the art","volume":"105","author":"Cheng","year":"2017","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.jag.2020.102163_bib0055","doi-asserted-by":"crossref","first-page":"1632","DOI":"10.1111\/2041-210X.13256","article-title":"Applications for deep learning in ecology","volume":"10","author":"Christin","year":"2019","journal-title":"Methods Ecol. Evol."},{"key":"10.1016\/j.jag.2020.102163_bib0060","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.rse.2018.09.002","article-title":"The Harmonized Landsat and Sentinel-2 surface reflectance data set","volume":"219","author":"Claverie","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0065","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/0034-4257(90)90085-Z","article-title":"Calculating the vegetation index faster","volume":"34","author":"Crippen","year":"1990","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0070","doi-asserted-by":"crossref","first-page":"2783","DOI":"10.1890\/07-0539.1","article-title":"Random forests for classification in ecology","volume":"88","author":"Cutler","year":"2007","journal-title":"Ecology"},{"key":"10.1016\/j.jag.2020.102163_bib0075","series-title":"Deep Learning Pipeline : Building a Deep Learning Model With TensorFlow","author":"El-Amir","year":"2020"},{"key":"10.1016\/j.jag.2020.102163_bib0080","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1109\/TGRS.2007.907602","article-title":"Pine forest height inversion using single-pass X-band PolInSAR data","volume":"46","author":"Garestier","year":"2007","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jag.2020.102163_bib0085","doi-asserted-by":"crossref","first-page":"1569","DOI":"10.1890\/09-1670.1","article-title":"Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird","volume":"91","author":"Goetz","year":"2010","journal-title":"Ecology"},{"key":"10.1016\/j.jag.2020.102163_bib0090","doi-asserted-by":"crossref","first-page":"298","DOI":"10.1038\/s41893-019-0246-x","article-title":"Deep learning to map concentrated animal feeding operations","volume":"2","author":"Handan-Nader","year":"2019","journal-title":"Nat. Sustain."},{"key":"10.1016\/j.jag.2020.102163_bib0095","series-title":"CMS: GLAS LiDAR-Derived Global Estimates of Forest Canopy Height, 2004-2008","author":"Healey","year":"2016"},{"key":"10.1016\/j.jag.2020.102163_bib0100","doi-asserted-by":"crossref","first-page":"3446","DOI":"10.3390\/rs70403446","article-title":"Airborne Lidar for woodland habitat quality monitoring: exploring the significance of Lidar data characteristics when modelling organism-habitat relationships","volume":"7","author":"Hill","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2020.102163_bib0105","doi-asserted-by":"crossref","first-page":"397","DOI":"10.1016\/S0034-4257(02)00056-1","article-title":"Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height","volume":"82","author":"Hudak","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0110","doi-asserted-by":"crossref","first-page":"3833","DOI":"10.1016\/j.rse.2008.06.006","article-title":"Development of a two-band enhanced vegetation index without a blue band","volume":"112","author":"Jiang","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0115","doi-asserted-by":"crossref","DOI":"10.1002\/ecs2.2430","article-title":"Innovation in rangeland monitoring: annual, 30 m, plant functional type percent cover maps for U.S. rangelands, 1984\u20132017","volume":"9","author":"Jones","year":"2018","journal-title":"Ecosphere"},{"key":"10.1016\/j.jag.2020.102163_bib0120","doi-asserted-by":"crossref","first-page":"6404","DOI":"10.1109\/TGRS.2013.2296533","article-title":"TanDEM-X Pol-InSAR performance for forest height estimation","volume":"52","author":"Kugler","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jag.2020.102163_bib0125","doi-asserted-by":"crossref","first-page":"778","DOI":"10.1109\/LGRS.2017.2681128","article-title":"Deep learning classification of land cover and crop types using remote sensing data","volume":"14","author":"Kussul","year":"2017","journal-title":"IEEE Geosci. Remote. Sens. Lett."},{"key":"10.1016\/j.jag.2020.102163_bib0130","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2019.111347","article-title":"Country-wide high-resolution vegetation height mapping with Sentinel-2","volume":"233","author":"Lang","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0135","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.gsf.2015.07.003","article-title":"Machine learning in geosciences and remote sensing","volume":"7","author":"Lary","year":"2016","journal-title":"Geosci. Front."},{"key":"10.1016\/j.jag.2020.102163_bib0140","first-page":"37","article-title":"A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system","author":"Lefsky","year":"2010","journal-title":"Geophys. Res. Lett."},{"key":"10.1016\/j.jag.2020.102163_bib0145","doi-asserted-by":"crossref","first-page":"393","DOI":"10.1046\/j.1466-822x.2002.00303.x","article-title":"Lidar remote sensing of above\u2010ground biomass in three biomes","volume":"11","author":"Lefsky","year":"2002","journal-title":"Glob. Ecol. Biogeogr."},{"key":"10.1016\/j.jag.2020.102163_bib0150","first-page":"32","article-title":"Estimates of forest canopy height and aboveground biomass using ICESat","author":"Lefsky","year":"2005","journal-title":"Geophys. Res. Lett."},{"key":"10.1016\/j.jag.2020.102163_bib0155","doi-asserted-by":"crossref","first-page":"1330","DOI":"10.1109\/LGRS.2016.2584109","article-title":"Individual tree delineation in windbreaks using airborne-laser-scanning data and unmanned aerial vehicle stereo images","volume":"13","author":"Li","year":"2016","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.jag.2020.102163_bib0160","first-page":"88","article-title":"Geostatistical modeling using LiDAR-derived prior knowledge with SPOT-6 data to estimate temperate forest canopy cover and above-ground biomass via stratified random sampling","volume":"41","author":"Li","year":"2015","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2020.102163_bib0165","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.isprsjprs.2016.01.006","article-title":"Terrestrial laser scanning in forest inventories","volume":"115","author":"Liang","year":"2016","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2020.102163_bib0170","first-page":"18","article-title":"Classification and regression by randomForest","volume":"2","author":"Liaw","year":"2002","journal-title":"R news"},{"key":"10.1016\/j.jag.2020.102163_bib0175","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1016\/j.isprsjprs.2019.03.016","article-title":"Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery","volume":"151","author":"Liu","year":"2019","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2020.102163_bib0180","first-page":"1","article-title":"Sentinel-2 Sen2Cor: L2A processor for users","author":"Louis","year":"2016","journal-title":"Proceedings Living Planet Symposium 2016"},{"key":"10.1016\/j.jag.2020.102163_bib0185","first-page":"83","article-title":"Estimating forest aboveground biomass using small-footprint full-waveform airborne LiDAR data","author":"Luo","year":"2019","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2020.102163_bib0190","doi-asserted-by":"crossref","first-page":"260","DOI":"10.1016\/j.rse.2016.12.029","article-title":"The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation","volume":"190","author":"Markus","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0195","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1093\/biomet\/37.1-2.17","article-title":"Notes on continuous stochastic phenomena","volume":"37","author":"Moran","year":"1950","journal-title":"Biometrika"},{"key":"10.1016\/j.jag.2020.102163_bib0200","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.rse.2018.11.005","article-title":"The ATL08 land and vegetation product for the ICESat-2 Mission","volume":"221","author":"Neuenschwander","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0205","series-title":"Ice, Cloud, and Land Elevation Satellite-2 Algorithm Theoretical Basis Document for Land - Vegetation Along-track Products","author":"Neuenschwander","year":"2018"},{"key":"10.1016\/j.jag.2020.102163_bib0210","doi-asserted-by":"crossref","first-page":"1721","DOI":"10.3390\/rs11141721","article-title":"Canopy and terrain height retrievals with ICESat-2: a first look","volume":"11","author":"Neuenschwander","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2020.102163_bib0215","doi-asserted-by":"crossref","first-page":"889","DOI":"10.3390\/rs11070889","article-title":"Synthesis of leaf-on and leaf-off unmanned aerial vehicle (UAV) stereo imagery for the inventory of aboveground biomass of deciduous forests","volume":"11","author":"Ni","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2020.102163_bib0220","doi-asserted-by":"crossref","first-page":"2798","DOI":"10.1016\/j.rse.2010.08.025","article-title":"Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar","volume":"115","author":"Pang","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0225","first-page":"199","article-title":"Multitemporal settlement and population mapping from Landsat using Google Earth Engine","volume":"35","author":"Patel","year":"2015","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2020.102163_bib0230","doi-asserted-by":"crossref","first-page":"3453","DOI":"10.1109\/JSTARS.2018.2868119","article-title":"A machine-learning approach to PolInSAR and LiDAR data fusion for improved tropical forest canopy height estimation using NASA AfriSAR campaign data","volume":"11","author":"Pourshamsi","year":"2018","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.jag.2020.102163_bib0235","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/0034-4257(94)90134-1","article-title":"A modified soil adjusted vegetation index","volume":"48","author":"Qi","year":"1994","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0240","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2019.111283","article-title":"Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data","volume":"232","author":"Qi","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0245","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1038\/s41586-019-0912-1","article-title":"Deep learning and process understanding for data-driven Earth system science","volume":"566","author":"Reichstein","year":"2019","journal-title":"Nature"},{"key":"10.1016\/j.jag.2020.102163_bib0250","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.rse.2017.04.007","article-title":"UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA","volume":"195","author":"Sankey","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0255","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1002\/rse2.44","article-title":"UAV hyperspectral and lidar data and their fusion for arid and semi\u2010arid land vegetation monitoring","volume":"4","author":"Sankey","year":"2018","journal-title":"Remote Sens. Ecol. Conserv."},{"key":"10.1016\/j.jag.2020.102163_bib0260","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2019.111439","article-title":"Harmonizing Landsat 8 and Sentinel-2: a time-series-based reflectance adjustment approach","volume":"235","author":"Shang","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0265","first-page":"116","article-title":"Mapping forest canopy height globally with spaceborne lidar","author":"Simard","year":"2011","journal-title":"J. Geophys. Res. Biogeosci."},{"key":"10.1016\/j.jag.2020.102163_bib0270","doi-asserted-by":"crossref","first-page":"3899","DOI":"10.3390\/f6113899","article-title":"Characterizing the height structure and composition of a boreal forest using an individual tree crown approach applied to photogrammetric point clouds","volume":"6","author":"St-Onge","year":"2015","journal-title":"Forests"},{"key":"10.1016\/j.jag.2020.102163_bib0275","doi-asserted-by":"crossref","first-page":"4385","DOI":"10.1038\/s41467-019-12380-6","article-title":"Tree height explains mortality risk during an intense drought","volume":"10","author":"Stovall","year":"2019","journal-title":"Nat. Commun."},{"key":"10.1016\/j.jag.2020.102163_bib0280","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.rse.2015.12.002","article-title":"Spatial distribution of forest aboveground biomass in China: estimation through combination of spaceborne lidar, optical imagery, and forest inventory data","volume":"173","author":"Su","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0285","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1016\/j.rse.2018.10.004","article-title":"Characterizing 32 years of shrub cover dynamics in southern Portugal using annual Landsat composites and machine learning regression modeling","volume":"219","author":"Suess","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0290","series-title":"A Language and Environment for Statistical Computing","author":"Team","year":"2014"},{"key":"10.1016\/j.jag.2020.102163_bib0295","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0137545","article-title":"The complicate observations and multi-parameter land information constructions on allied telemetry experiment (COMPLICATE)","volume":"10","author":"Tian","year":"2015","journal-title":"PLoS One"},{"key":"10.1016\/j.jag.2020.102163_bib0300","doi-asserted-by":"crossref","first-page":"7339","DOI":"10.1080\/01431161.2014.967888","article-title":"Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data","volume":"35","author":"Tian","year":"2014","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2020.102163_bib0305","doi-asserted-by":"crossref","first-page":"859","DOI":"10.3390\/rs10060859","article-title":"Estimating satellite-derived bathymetry (SDB) with the google earth engine and sentinel-2","volume":"10","author":"Traganos","year":"2018","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2020.102163_bib0310","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.rse.2016.04.008","article-title":"Preliminary analysis of the performance of the Landsat 8\/OLI land surface reflectance product","volume":"185","author":"Vermote","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0315","doi-asserted-by":"crossref","first-page":"62","DOI":"10.3390\/rs8010062","article-title":"Quantifying multi-decadal change of planted forest cover using airborne LiDAR and Landsat imagery","volume":"8","author":"Wang","year":"2016","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2020.102163_bib0320","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.rse.2015.12.005","article-title":"A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height","volume":"174","author":"Wang","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0325","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.rse.2012.02.001","article-title":"Lidar sampling for large-area forest characterization: a review","volume":"121","author":"Wulder","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0330","doi-asserted-by":"crossref","first-page":"2518","DOI":"10.1002\/ecy.1470","article-title":"Remotely sensed canopy height reveals three pantropical ecosystem states","volume":"97","author":"Xu","year":"2016","journal-title":"Ecology"},{"key":"10.1016\/j.jag.2020.102163_bib0335","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2020.111716","article-title":"Deep learning in environmental remote sensing: achievements and challenges","volume":"241","author":"Yuan","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0340","doi-asserted-by":"crossref","first-page":"188","DOI":"10.1016\/j.rse.2016.01.015","article-title":"Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada","volume":"176","author":"Zald","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2020.102163_bib0345","doi-asserted-by":"crossref","first-page":"548","DOI":"10.1111\/geb.12887","article-title":"Towards connecting biodiversity and geodiversity across scales with satellite remote sensing","volume":"28","author":"Zarnetske","year":"2019","journal-title":"Glob. Ecol. Biogeogr."},{"key":"10.1016\/j.jag.2020.102163_bib0350","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1111\/1365-2745.12510","article-title":"Regional and historical factors supplement current climate in shaping global forest canopy height","volume":"104","author":"Zhang","year":"2016","journal-title":"J. Ecol."},{"key":"10.1016\/j.jag.2020.102163_bib0355","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1109\/MGRS.2016.2540798","article-title":"Deep learning for remote sensing data: a technical tutorial on the state of the art","volume":"4","author":"Zhang","year":"2016","journal-title":"IEEE Geosci. Remote Sens. Mag."},{"key":"10.1016\/j.jag.2020.102163_bib0360","doi-asserted-by":"crossref","first-page":"1459","DOI":"10.3390\/rs11121459","article-title":"Deep learning based retrieval of forest aboveground biomass from combined LiDAR and landsat 8 data","volume":"11","author":"Zhang","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2020.102163_bib0365","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1016\/S0264-3707(02)00042-X","article-title":"ICESat\u2019s laser measurements of polar ice, atmosphere, ocean, and land","volume":"34","author":"Zwally","year":"2002","journal-title":"J. Geodyn."}],"container-title":["International Journal of Applied Earth Observation and Geoinformation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S030324342030026X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S030324342030026X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,6,27]],"date-time":"2022-06-27T15:47:05Z","timestamp":1656344825000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S030324342030026X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10]]},"references-count":73,"alternative-id":["S030324342030026X"],"URL":"https:\/\/doi.org\/10.1016\/j.jag.2020.102163","relation":{},"ISSN":["1569-8432"],"issn-type":[{"value":"1569-8432","type":"print"}],"subject":[],"published":{"date-parts":[[2020,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data","name":"articletitle","label":"Article Title"},{"value":"International Journal of Applied Earth Observation and Geoinformation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jag.2020.102163","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"102163"}}