{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T18:58:17Z","timestamp":1722970697936},"reference-count":96,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,12,1]],"date-time":"2018-12-01T00:00:00Z","timestamp":1543622400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Applied Earth Observation and Geoinformation"],"published-print":{"date-parts":[[2018,12]]},"DOI":"10.1016\/j.jag.2018.08.013","type":"journal-article","created":{"date-parts":[[2018,9,8]],"date-time":"2018-09-08T10:39:10Z","timestamp":1536403150000},"page":"666-681","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":12,"special_numbering":"C","title":["Modelling LiDAR derived tree canopy height from Landsat TM, ETM+ and OLI satellite imagery\u2014A machine learning approach"],"prefix":"10.1016","volume":"73","author":[{"given":"Grant","family":"Staben","sequence":"first","affiliation":[]},{"given":"Arko","family":"Lucieer","sequence":"additional","affiliation":[]},{"given":"Peter","family":"Scarth","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jag.2018.08.013_bib0005","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.isprsjprs.2014.11.007","article-title":"Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm","volume":"101","author":"Ahmed","year":"2015","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0010","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1117\/1.3216031","article-title":"Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM + imagery","volume":"3","author":"Armston","year":"2009","journal-title":"J. Appl. Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0015","doi-asserted-by":"crossref","first-page":"366","DOI":"10.1016\/j.rse.2011.10.012","article-title":"Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda","volume":"117","author":"Avitabile","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0020","doi-asserted-by":"crossref","first-page":"477","DOI":"10.1046\/j.1442-9993.2002.01209.x","article-title":"Phenological patterns in monsoon rainforests in the Northern Territory, Australia","volume":"27","author":"Bach","year":"2002","journal-title":"Austral Ecol."},{"key":"10.1016\/j.jag.2018.08.013_bib0025","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1080\/02757259509532298","article-title":"A review of vegetation indices","volume":"13","author":"Bannari","year":"1995","journal-title":"Remote Sens. Rev."},{"key":"10.1016\/j.jag.2018.08.013_bib0030","doi-asserted-by":"crossref","first-page":"510","DOI":"10.5589\/m03-018","article-title":"Detecting translational landslide scars using segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains, British Columbia","volume":"29","author":"Barlow","year":"2003","journal-title":"Can. J. Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0035","doi-asserted-by":"crossref","DOI":"10.1016\/j.isprsjprs.2016.01.011","article-title":"Random forest in remote sensing: a review of applications and future directions","volume":"114","author":"Belgiu","year":"2016","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0040","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1080\/00049189408703096","article-title":"Fire and cyclone damage to woody vegetation on the north coast of the Northern Territory, Australia","volume":"25","author":"Bowman","year":"1994","journal-title":"Aust. Geogr."},{"key":"10.1016\/j.jag.2018.08.013_bib0045","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.jag.2018.08.013_bib0050","series-title":"Remnant Vegetation Survey: Darwin to Palmerston Region","author":"Brock","year":"1995"},{"key":"10.1016\/j.jag.2018.08.013_bib0055","series-title":"Mangrove survey of Darwin Harbour Northern Territory (N.T.)","author":"Brocklehurst","year":"1996"},{"key":"10.1016\/j.jag.2018.08.013_bib0060","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/S0034-4257(99)00035-8","article-title":"A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: an image and model analysis","volume":"71","author":"Brown","year":"2000","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0065","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1080\/01431169308904370","article-title":"In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation","volume":"14","author":"Buschmann","year":"1993","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0070","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/0304-3924(83)90054-0","article-title":"Tree damage in Darwin parks and gardens during cyclones Tracy and Max","volume":"10","author":"Cameron","year":"1983","journal-title":"Landsc. Plan."},{"key":"10.1016\/j.jag.2018.08.013_bib0075","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/0168-1923(95)02291-0","article-title":"Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands","volume":"80","author":"Chen","year":"1996","journal-title":"Agric. Forest Meteorol."},{"key":"10.1016\/j.jag.2018.08.013_bib0080","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1641\/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2","article-title":"Landsat's role in ecological applications of remote sensing","volume":"54","author":"Cohen","year":"2004","journal-title":"BioScience"},{"key":"10.1016\/j.jag.2018.08.013_bib0085","doi-asserted-by":"crossref","first-page":"561","DOI":"10.1016\/S0034-4257(02)00173-6","article-title":"An improved strategy for regression of biophysical variables and Landsat ETM+ data","volume":"84","author":"Cohen","year":"2003","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0090","doi-asserted-by":"crossref","first-page":"462","DOI":"10.1111\/j.1442-9993.2008.01901.x","article-title":"The impact of wind on trees in Australian tropical savannas: lessons from Cyclone Monica","volume":"33","author":"Cook","year":"2008","journal-title":"Austral Ecol."},{"key":"10.1016\/j.jag.2018.08.013_bib0095","doi-asserted-by":"crossref","first-page":"845","DOI":"10.1111\/aec.12262","article-title":"Stocks and dynamics of carbon in trees across a rainfall gradient in a tropical savanna","volume":"40","author":"Cook","year":"2015","journal-title":"Austral Ecol."},{"key":"10.1016\/j.jag.2018.08.013_bib0100","doi-asserted-by":"crossref","first-page":"757","DOI":"10.1071\/BT96021","article-title":"Estimation of eucalypt forest leaf area index on the South Coast of New South Wales using Landsat MSS data","volume":"45","author":"Coops","year":"1997","journal-title":"Aust. J. Bot."},{"key":"10.1016\/j.jag.2018.08.013_bib0105","doi-asserted-by":"crossref","first-page":"2783","DOI":"10.1890\/07-0539.1","article-title":"Random forests for classification in ecology","volume":"88","author":"Cutler","year":"2007","journal-title":"Ecology"},{"key":"10.1016\/j.jag.2018.08.013_bib0110","series-title":"International Geoscience and Remote Sensing Symposium (IGARSS)","first-page":"523","article-title":"A regression model approach for mapping woody foliage projective cover using Landsat Imagery in Queensland, Australia","author":"Danaher","year":"2004"},{"key":"10.1016\/j.jag.2018.08.013_bib0115","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.rse.2013.04.013","article-title":"Remote sensing of environment spectral analysis of fire severity in north Australian tropical savannas","volume":"136","author":"Edwards","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0120","first-page":"151","article-title":"Landsat TM-based forest damage assessment: correction for topographic effects","volume":"62","author":"Ekstrand","year":"1996","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0125","doi-asserted-by":"crossref","first-page":"408","DOI":"10.1016\/j.rse.2006.04.005","article-title":"Impact of understory vegetation on forest canopy reflectance and remotely sensed LAI estimates","volume":"103","author":"Eriksson","year":"2006","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0130","doi-asserted-by":"crossref","DOI":"10.1007\/s10750-007-0782-7","article-title":"Differences in regeneration between hurricane damaged and clear-cut mangrove stands 25 years after clearing","author":"Ferwerda","year":"2007","journal-title":"Hydrobiologia"},{"key":"10.1016\/j.jag.2018.08.013_bib0135","doi-asserted-by":"crossref","first-page":"7952","DOI":"10.3390\/rs6097952","article-title":"Continuity of reflectance data between Landsat-7 ETM+ and Landsat-8 OLI, for both top-of-atmosphere and surface reflectance: a study in the Australian landscape","volume":"6","author":"Flood","year":"2014","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0140","doi-asserted-by":"crossref","first-page":"83","DOI":"10.3390\/rs5010083","article-title":"An operational scheme for deriving standardised surface reflectance from Landsat TM\/ETM+ and SPOT HRG imagery for Eastern Australia","volume":"5","author":"Flood","year":"2013","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0145","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1016\/S0034-4257(03)00039-7","article-title":"Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions","volume":"85","author":"Foody","year":"2003","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0150","series-title":"Deciduous vine thickets of the Darwin area and effects of cyclone \u2018Tracy\u2019 25 December 1974","author":"Fox","year":"1980"},{"key":"10.1016\/j.jag.2018.08.013_bib0155","doi-asserted-by":"crossref","first-page":"1702","DOI":"10.3390\/rs70201702","article-title":"Mapping spatial distribution of larch plantations from multi-seasonal landsat-8 OLI imagery and multi-scale textures using random forests","volume":"7","author":"Gao","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0160","first-page":"616","article-title":"Fire regimes of World Heritage Kakadu National Park, Australia","volume":"25","author":"Gill","year":"2000","journal-title":"Austral Ecol."},{"key":"10.1016\/j.jag.2018.08.013_bib0165","doi-asserted-by":"crossref","first-page":"679","DOI":"10.1080\/01431161.2016.1266112","article-title":"A method for mapping Australian woody vegetation cover by linking continental-scale field data and long-term Landsat time series","volume":"38","author":"Gill","year":"2017","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2017.11.010","article-title":"Hierarchical integration of individual tree and area-based approaches for savanna biomass uncertainty estimation from airborne LiDAR","author":"Goldbergs","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0175","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2014.03.021","article-title":"Development of an automated method for mapping fire history captured in Landsat TM and ETM+ time series across Queensland, Australia","author":"Goodwin","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0180","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1198\/tast.2009.08199","article-title":"Variable importance assessment in regression: linear regression versus random forest","volume":"63","author":"Gr\u00f6mping","year":"2009","journal-title":"Am. Stat."},{"key":"10.1016\/j.jag.2018.08.013_bib0185","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/j.rse.2016.02.023","article-title":"Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data","volume":"185","author":"Hansen","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0190","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1080\/01431161.2010.510810","article-title":"Relationship between canopy height and Landsat ETM+ response in lowland Amazonian rainforest","volume":"2","author":"Hill","year":"2011","journal-title":"Remote Sens. Lett."},{"key":"10.1016\/j.jag.2018.08.013_bib0195","doi-asserted-by":"crossref","first-page":"397","DOI":"10.1016\/S0034-4257(02)00056-1","article-title":"Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height","volume":"82","author":"Hudak","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0200","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/0034-4257(88)90106-X","article-title":"A soil-adjusted vegetation index (SAVI)","volume":"25","author":"Huete","year":"1988","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0205","first-page":"43","article-title":"Detection of changes in leaf water content using near- and middle-infrared reflectances","volume":"54","author":"Hunt","year":"1989","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0210","doi-asserted-by":"crossref","first-page":"045023","DOI":"10.1088\/1748-9326\/8\/4\/045023","article-title":"Impacts of an extreme cyclone event on landscape-scale savanna fire, productivity and greenhouse gas emissions","volume":"8","author":"Hutley","year":"2013","journal-title":"Environ. Res. Lett."},{"key":"10.1016\/j.jag.2018.08.013_bib0215","doi-asserted-by":"crossref","first-page":"6901","DOI":"10.1080\/01431161.2010.510811","article-title":"On the terminology of the spectral vegetation index (NIRSWIR)\/(NIR+SWIR)","volume":"32","author":"Ji","year":"2011","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0220","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1177\/0309133309339563","article-title":"A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters","volume":"33","author":"Joyce","year":"2009","journal-title":"Prog. Phys. Geogr."},{"key":"10.1016\/j.jag.2018.08.013_bib0225","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1007\/s00338-003-0357-7","article-title":"Combining Landsat ETM+ and Reef Check classifications for mapping coral reefs: a critical assessment from the southern Great Barrier Reef, Australia","volume":"23","author":"Joyce","year":"2004","journal-title":"Coral Reefs"},{"key":"10.1016\/j.jag.2018.08.013_bib0230","doi-asserted-by":"crossref","first-page":"10017","DOI":"10.3390\/rs70810017","article-title":"Mapping tree canopy cover and aboveground biomass in Sudano-Sahelian Woodlands using Landsat 8 and random forest","volume":"7","author":"Karlson","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0235","doi-asserted-by":"crossref","first-page":"863","DOI":"10.14358\/PERS.80.9.863","article-title":"Generating pit-free canopy height models from airborne lidar","volume":"80","author":"Khosravipour","year":"2014","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0240","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.foreco.2006.01.030","article-title":"A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland","volume":"226","author":"Labrecque","year":"2006","journal-title":"Forest Ecol. Manage."},{"key":"10.1016\/j.jag.2018.08.013_bib0245","unstructured":"LAStools, 2017. LAStools, Efficient LiDAR Processing Software (version 170822, academic), obtained from http:\/\/rapidlasso.com\/LAStools."},{"key":"10.1016\/j.jag.2018.08.013_bib0250","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/j.isprsjprs.2010.01.002","article-title":"A framework for creating and validating a non-linear spectrum-biomass model to estimate the secondary succession biomass in moist tropical forests","volume":"65","author":"Li","year":"2010","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0255","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1191\/0309133303pp360ra","article-title":"LiDAR remote sensing of forest structure","volume":"27","author":"Lim","year":"2003","journal-title":"Prog. Phys. Geogr."},{"key":"10.1016\/j.jag.2018.08.013_bib0260","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1371\/journal.pone.0085993","article-title":"A tale of two \u201cForests\u201d: Random Forest machine learning aids tropical forest carbon mapping","volume":"9","author":"Mascaro","year":"2014","journal-title":"PLoS ONE"},{"key":"10.1016\/j.jag.2018.08.013_bib0265","doi-asserted-by":"crossref","DOI":"10.1016\/j.isprsjprs.2015.03.014","article-title":"Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin","volume":"105","author":"Mellor","year":"2015","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0270","doi-asserted-by":"crossref","first-page":"2838","DOI":"10.3390\/rs5062838","article-title":"The performance of random forests in an operational setting for large area sclerophyll forest classification","volume":"5","author":"Mellor","year":"2013","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0275","doi-asserted-by":"crossref","first-page":"1021","DOI":"10.1080\/014311698215586","article-title":"Combining agricultural crop models and satellite observations: from field to regional scales","volume":"19","author":"Moulin","year":"1998","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0280","series-title":"Introduction to Machine Learning with Python; A Guide for Data Scientists","author":"M\u00fcller","year":"2016"},{"key":"10.1016\/j.jag.2018.08.013_bib0285","series-title":"Big Blow up North: A History of Tropical Cyclones in Australia's NorthernTerritory","author":"Murphy","year":"1984"},{"key":"10.1016\/j.jag.2018.08.013_bib0290","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1071\/BT96015","article-title":"Seasonal variation in water relations of trees of differing leaf phenology in a wet\u2013dry tropical savanna near Darwin, Northern Australia","volume":"45","author":"Myers","year":"1997","journal-title":"Aust. J. Bot."},{"key":"10.1016\/j.jag.2018.08.013_bib0295","doi-asserted-by":"crossref","first-page":"591","DOI":"10.1093\/treephys\/19.9.591","article-title":"Transpiration increases during the dry season: patterns of tree water use in eucalypt open-forests of northern Australia","volume":"19","author":"O\u2019Grady","year":"1999","journal-title":"Tree Physiol."},{"key":"10.1016\/j.jag.2018.08.013_bib0300","first-page":"154","article-title":"How many trees in a random forest?","volume":"7376","author":"Oshiro","year":"2012","journal-title":"LNCS"},{"key":"10.1016\/j.jag.2018.08.013_bib0305","doi-asserted-by":"crossref","first-page":"10750","DOI":"10.3390\/rs61110750","article-title":"Estimation of airborne lidar-derived tropical forest canopy height using Landsat time series in Cambodia","volume":"6","author":"Ota","year":"2014","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0310","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1080\/01431160412331269698","article-title":"Random forest classifier for remote sensing classification","volume":"26","author":"Pal","year":"2005","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0315","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1016\/j.ecss.2007.10.019","article-title":"Assessing the extent of mangrove change caused by Cyclone Vance in the eastern Exmouth Gulf, northwestern Australia","volume":"77","author":"Paling","year":"2008","journal-title":"Estuar. Coast. Shelf Sci."},{"key":"10.1016\/j.jag.2018.08.013_bib0320","doi-asserted-by":"crossref","first-page":"1261","DOI":"10.1080\/01431160903380656","article-title":"Relationship between LiDAR-derived forest canopy height and Landsat images","volume":"31","author":"Pascual","year":"2010","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0325","first-page":"2825","article-title":"Scikit-learn: machine learning in Python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.jag.2018.08.013_bib0330","doi-asserted-by":"crossref","first-page":"839","DOI":"10.1111\/1365-2664.12261","article-title":"Satellite remote sensing for applied ecologists: opportunities and challenges","volume":"51","author":"Pettorelli","year":"2014","journal-title":"J. Appl. Ecol."},{"key":"10.1016\/j.jag.2018.08.013_bib0335","doi-asserted-by":"crossref","first-page":"1053","DOI":"10.1016\/j.rse.2009.12.018","article-title":"Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches","volume":"114","author":"Powell","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0340","series-title":"4th Australasian Remote Sensing Conference","article-title":"Use of Landsat 5 MSS imagery to map cyclone damage to rainforest in North Queensland","author":"Preston","year":"1987"},{"key":"10.1016\/j.jag.2018.08.013_bib0345","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/0034-4257(94)90134-1","article-title":"A modified soil adjusted vegetation index","volume":"48","author":"Qi","year":"1994","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0350","doi-asserted-by":"crossref","first-page":"3446","DOI":"10.1016\/j.rse.2011.08.008","article-title":"Assessment of deforestation in the Lower Amazon floodplain using historical Landsat MSS\/TM imagery","volume":"115","author":"Ren\u00f3","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0355","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.isprsjprs.2011.11.002","article-title":"An assessment of the effectiveness of a random forest classifier for landcover classification","volume":"67","author":"Rodriguez-Galiano","year":"2012","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0360","first-page":"1","article-title":"Mapping of mangrove extent and zonation using high and low tide composites of Landsat data","author":"Rogers","year":"2017","journal-title":"Hydrobiologia"},{"key":"10.1016\/j.jag.2018.08.013_bib0365","doi-asserted-by":"crossref","first-page":"1918","DOI":"10.2307\/1941546","article-title":"What does remote sensing do for ecology?","volume":"72","author":"Roughgarden","year":"1991","journal-title":"Ecology"},{"key":"10.1016\/j.jag.2018.08.013_bib0370","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/j.rse.2016.01.023","article-title":"A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance","volume":"176","author":"Roy","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0375","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1080\/01431160903486693","article-title":"Accessing free Landsat data via the Internet: Africa's challenge","volume":"1","author":"Roy","year":"2010","journal-title":"Remote Sens. Lett."},{"key":"10.1016\/j.jag.2018.08.013_bib0380","series-title":"15th Australasian Remote Sensing and Photogrammetry Conference","article-title":"Tracking grazing pressure and climate interaction? The role of Landsat fractional cover in time series analysis","author":"Scarth","year":"2010"},{"key":"10.1016\/j.jag.2018.08.013_bib0385","doi-asserted-by":"crossref","DOI":"10.1111\/j.1472-4642.2010.00688.x","article-title":"Turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas","author":"Setterfield","year":"2010","journal-title":"Divers. Distrib."},{"key":"10.1016\/j.jag.2018.08.013_bib0390","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1038\/523403a","article-title":"Environmental science: agree on biodiversity metrics to track from space","volume":"523","author":"Skidmore","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.jag.2018.08.013_bib0395","doi-asserted-by":"crossref","DOI":"10.2134\/agronj2005.0200","article-title":"Aerial color infrared photography for determining early in-season nitrogen requirements in corn","author":"Sripada","year":"2006","journal-title":"Agron. J."},{"key":"10.1016\/j.jag.2018.08.013_bib0400","doi-asserted-by":"crossref","first-page":"204","DOI":"10.1016\/j.jag.2016.06.011","article-title":"Obtaining biophysical measurements of woody vegetation from high resolution digital aerial photography in tropical and arid environments: Northern Territory, Australia","volume":"52","author":"Staben","year":"2016","journal-title":"Int. J. Appl. Earth Observ. Geoinform."},{"key":"10.1016\/j.jag.2018.08.013_bib0405","doi-asserted-by":"crossref","first-page":"562","DOI":"10.1111\/j.1442-9993.2008.01911.x","article-title":"Estimates of tree canopy loss as a result of Cyclone Monica, in the Magela Creek catchment northern Australia","volume":"33","author":"Staben","year":"2008","journal-title":"Austral Ecol."},{"key":"10.1016\/j.jag.2018.08.013_bib0410","series-title":"Report on cyclone damage to natural vegetation in the Darwin area after cyclone Tracy 25 December 1974","author":"Stocker","year":"1976"},{"key":"10.1016\/j.jag.2018.08.013_bib0415","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1016\/j.ecoinf.2010.03.004","article-title":"Estimating vegetation height and canopy cover from remotely sensed data with machine learning","volume":"5","author":"Stojanova","year":"2010","journal-title":"Ecol. Inform."},{"key":"10.1016\/j.jag.2018.08.013_bib0420","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1186\/1471-2105-9-307","article-title":"Conditional variable importance for random forests","volume":"9","author":"Strobl","year":"2008","journal-title":"BMC Bioinform."},{"key":"10.1016\/j.jag.2018.08.013_bib0425","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/0034-4257(79)90013-0","article-title":"Red and photographic infrared linear combinations for monitoring vegetati","volume":"8","author":"Tucker","year":"1979","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0430","doi-asserted-by":"crossref","first-page":"3916","DOI":"10.1016\/j.rse.2008.06.011","article-title":"Assessment of radiometric correction techniques in analyzing vegetation variability and change using time series of Landsat images","volume":"112","author":"Vicente-Serrano","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0435","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1007\/s11119-008-9075-z","article-title":"A broad-band leaf chlorophyll vegetation index at the canopy scale","volume":"9","author":"Vincini","year":"2008","journal-title":"Precis. Agric."},{"key":"10.1016\/j.jag.2018.08.013_bib0440","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1111\/j.1442-9993.2004.01356.x","article-title":"Recent developments in analysis of spatial and temporal data for landscape qualities and monitoring","volume":"29","author":"Wallace","year":"2004","journal-title":"Austral Ecol."},{"key":"10.1016\/j.jag.2018.08.013_bib0445","doi-asserted-by":"crossref","first-page":"9647","DOI":"10.3390\/s101109647","article-title":"Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists","volume":"10","author":"Wang","year":"2010","journal-title":"Sensors"},{"key":"10.1016\/j.jag.2018.08.013_bib0450","doi-asserted-by":"crossref","first-page":"12563","DOI":"10.3390\/rs70912563","article-title":"Mapping forest canopy height across large areas by upscaling ALS estimates with freely available satellite data","volume":"7","author":"Wilkes","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2018.08.013_bib0455","doi-asserted-by":"crossref","first-page":"2542","DOI":"10.1890\/0012-9658(1997)078[2542:LPOWSI]2.0.CO;2","article-title":"Leaf phenology of woody species in a north Australian tropical savanna","volume":"78","author":"Williams","year":"1997","journal-title":"Ecology"},{"key":"10.1016\/j.jag.2018.08.013_bib0460","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1007\/s10113-010-0109-5","article-title":"Late 20th century mangrove encroachment in the coastal Australian monsoon tropics parallels the regional increase in woody biomass","volume":"11","author":"Williamson","year":"2011","journal-title":"Regional Environ. Change"},{"key":"10.1016\/j.jag.2018.08.013_bib0465","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1111\/j.1442-9993.1987.tb00937.x","article-title":"Fire, storm, flood and drought: the vegetation ecology of Howards Peninsula, Northern Territory, Australia","volume":"12","author":"Wilson","year":"1987","journal-title":"Aust. J. Ecol."},{"key":"10.1016\/j.jag.2018.08.013_bib0470","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1016\/S0034-4257(01)00259-0","article-title":"Monitoring large areas for forest change using Landsat: generalization across space, time and Landsat sensors","volume":"78","author":"Woodcock","year":"2001","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0475","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.rse.2012.02.001","article-title":"Lidar sampling for large-area forest characterization: a review","volume":"121","author":"Wulder","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2018.08.013_bib0480","series-title":"Biostatistical Analysis","author":"Zar","year":"1984"}],"container-title":["International Journal of Applied Earth Observation and Geoinformation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0303243418303970?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0303243418303970?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,5,18]],"date-time":"2022-05-18T20:45:19Z","timestamp":1652906719000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0303243418303970"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,12]]},"references-count":96,"alternative-id":["S0303243418303970"],"URL":"https:\/\/doi.org\/10.1016\/j.jag.2018.08.013","relation":{},"ISSN":["1569-8432"],"issn-type":[{"value":"1569-8432","type":"print"}],"subject":[],"published":{"date-parts":[[2018,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Modelling LiDAR derived tree canopy height from Landsat TM, ETM+ and OLI satellite imagery\u2014A machine learning approach","name":"articletitle","label":"Article Title"},{"value":"International Journal of Applied Earth Observation and Geoinformation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jag.2018.08.013","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}