{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T16:20:24Z","timestamp":1722961224476},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,9,1]],"date-time":"2015-09-01T00:00:00Z","timestamp":1441065600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"China\u2019s Special Funds","award":["2013CB733405"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["41201345"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"National High Technology Research and Development Program of China","award":["2014AA06A511"]},{"DOI":"10.13039\/501100012164","name":"863 Program","doi-asserted-by":"crossref","award":["2012AA12A304"],"id":[{"id":"10.13039\/501100012164","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Applied Earth Observation and Geoinformation"],"published-print":{"date-parts":[[2015,9]]},"DOI":"10.1016\/j.jag.2015.04.020","type":"journal-article","created":{"date-parts":[[2015,5,16]],"date-time":"2015-05-16T03:52:39Z","timestamp":1431748359000},"page":"88-98","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":21,"special_numbering":"C","title":["Geostatistical modeling using LiDAR-derived prior knowledge with SPOT-6 data to estimate temperate forest canopy cover and above-ground biomass via stratified random sampling"],"prefix":"10.1016","volume":"41","author":[{"given":"Wang","family":"Li","sequence":"first","affiliation":[]},{"given":"Zheng","family":"Niu","sequence":"additional","affiliation":[]},{"given":"Xinlian","family":"Liang","sequence":"additional","affiliation":[]},{"given":"Zengyuan","family":"Li","sequence":"additional","affiliation":[]},{"given":"Ni","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Shuai","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Cheng","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Shakir","family":"Muhammad","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.jag.2015.04.020_bib0005","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1080\/14498596.2013.815577","article-title":"Integrating remote sensing and geostatistics to estimate woody vegetation in an African savanna","volume":"58","author":"Adjorlolo","year":"2013","journal-title":"J. Spat. Sci."},{"issue":"4","key":"10.1016\/j.jag.2015.04.020_bib0010","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1016\/j.rse.2004.10.013","article-title":"Estimating forest canopy fuel parameters using LiDAR data","volume":"94","author":"Andersen","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0015","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.rse.2012.11.015","article-title":"A study of forest biomass estimates from lidar in the northern temperate forests of New England","volume":"130","author":"Ahmed","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0020","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/0034-4257(92)90060-W","article-title":"Cokriging with ground-based radiometry","volume":"41","author":"Atkinson","year":"1992","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0025","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1016\/0034-4257(94)90083-3","article-title":"Cokriging with airborne MSS imagery","volume":"50","author":"Atkinson","year":"1994","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0030","doi-asserted-by":"crossref","first-page":"e86121","DOI":"10.1371\/journal.pone.0086121","article-title":"Natural forest biomass estimation based on plantation information using PALSAR data","volume":"9","author":"Avtar","year":"2014","journal-title":"PloS One"},{"key":"10.1016\/j.jag.2015.04.020_bib0035","doi-asserted-by":"crossref","first-page":"692","DOI":"10.1080\/01431161.2011.577830","article-title":"Retrieval of forest canopy attributes based on a geometric-optical model using airborne LiDAR and optical remote-sensing data","volume":"33","author":"Cao","year":"2012","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2015.04.020_bib0040","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.foreco.2005.10.056","article-title":"Estimation of tree canopy cover in evergreen oak woodlands using remote sensing","volume":"223","author":"Carreiras","year":"2006","journal-title":"For. Ecol. Manage."},{"key":"10.1016\/j.jag.2015.04.020_bib0045","doi-asserted-by":"crossref","first-page":"466","DOI":"10.1016\/j.rse.2012.05.029","article-title":"Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band","volume":"124","author":"Cartus","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0050","doi-asserted-by":"crossref","first-page":"2931","DOI":"10.1016\/j.rse.2010.08.029","article-title":"Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors","volume":"115","author":"Clark","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0055","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1177\/030913339802200103","article-title":"Geostatistics and remote sensing","volume":"22","author":"Curran","year":"1998","journal-title":"Prog. Phys. Geogr."},{"key":"10.1016\/j.jag.2015.04.020_bib0060","first-page":"179","article-title":"Modeling the spatial distribution of above-ground carbon in Mexican coniferous forests using remote sensing and a geostatistical approach","volume":"30","author":"Galeana-Piza\u00f1a","year":"2014","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2015.04.020_bib0065","doi-asserted-by":"crossref","first-page":"816","DOI":"10.1016\/j.rse.2009.11.021","article-title":"Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data","volume":"114","author":"Garc\u00eda","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0070","series-title":"Monitoring Across Borders: 2010 Joint Meeting of the Forest Inventory and Analysis (FIA) Symposium and the Southern Mensurationists","first-page":"231","article-title":"Comparison of LiDAR- and photointerpretation-based estimates of canopy cover","author":"Gatziolis","year":"2012"},{"key":"10.1016\/j.jag.2015.04.020_bib0075","first-page":"47","article-title":"Laser-assisted selection of field plots for an area-based forest inventory","author":"Gobakken","year":"2013","journal-title":"Silva Fennica"},{"key":"10.1016\/j.jag.2015.04.020_bib0080","series-title":"Geostatistics for Natural Resources Evaluation","author":"Goovaerts","year":"1997"},{"key":"10.1016\/j.jag.2015.04.020_bib0085","doi-asserted-by":"crossref","first-page":"378","DOI":"10.1016\/j.foreco.2006.01.014","article-title":"Modeling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume","volume":"225","author":"Hall","year":"2006","journal-title":"For. Ecol. Manage."},{"key":"10.1016\/j.jag.2015.04.020_bib0090","first-page":"G00E04","article-title":"Improved estimates of forest vegetation structure and biomass with a LiDAR-optimized sampling design","volume":"114","author":"Hawbaker","year":"2009","journal-title":"J. Geophys. Res."},{"key":"10.1016\/j.jag.2015.04.020_bib0095","doi-asserted-by":"crossref","first-page":"984","DOI":"10.3390\/f4040984","article-title":"Above-ground biomass and biomass components estimation using LiDAR data in a coniferous forest","volume":"4","author":"He","year":"2013","journal-title":"Forests"},{"key":"10.1016\/j.jag.2015.04.020_bib0100","doi-asserted-by":"crossref","first-page":"397","DOI":"10.1016\/S0034-4257(02)00056-1","article-title":"Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height","volume":"82","author":"Hudak","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0105","doi-asserted-by":"crossref","first-page":"1190","DOI":"10.3390\/rs4051190","article-title":"Advances in forest inventory using airborne laser scanning","volume":"4","author":"Hyypp\u00e4","year":"2012","journal-title":"Remote Sens."},{"key":"10.1016\/j.jag.2015.04.020_bib0110","first-page":"1612","article-title":"Analyzing and retrieving structural information of Picea crassifolia based on airborne light detection and ranging data","volume":"17","author":"Li","year":"2013","journal-title":"J. Remote Sens."},{"key":"10.1016\/j.jag.2015.04.020_bib0115","doi-asserted-by":"crossref","first-page":"8172","DOI":"10.1080\/01431161.2013.833361","article-title":"Modeling lidar-derived boreal forest canopy cover with SPOT 4HRVIR data","volume":"34","author":"Korhonen","year":"2013","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2015.04.020_bib0120","doi-asserted-by":"crossref","first-page":"1065","DOI":"10.1016\/j.rse.2010.12.011","article-title":"Airborne discrete-return LIDAR data in the estimation of vertical canopy cover: angular canopy closure and leaf area index","volume":"115","author":"Korhonen","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0125","first-page":"13","article-title":"Two-dimensional weighted moving average trend surfaces for ore-evaluation","volume":"66","author":"Krige","year":"1966","journal-title":"J. S. Afr. Inst. Min. Metall."},{"key":"10.1016\/j.jag.2015.04.020_bib0130","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.foreco.2006.01.030","article-title":"A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland","volume":"226","author":"Labrecque","year":"2006","journal-title":"For. Ecol. Manage."},{"key":"10.1016\/j.jag.2015.04.020_bib0135","doi-asserted-by":"crossref","first-page":"2129","DOI":"10.1080\/01431169308954025","article-title":"Linear regressions for canopy cover estimation in Acacia woodlands using Landsat-TM, -MSS and SPOT HRV XS data","volume":"14","author":"Larsson","year":"1993","journal-title":"Int. J. Remote Sen."},{"key":"10.1016\/j.jag.2015.04.020_bib0140","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/S0034-4257(98)00071-6","article-title":"Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA","volume":"67","author":"Lefsky","year":"1999","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0145","doi-asserted-by":"crossref","first-page":"558","DOI":"10.1080\/02827580410019490","article-title":"Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators","volume":"19","author":"Lim","year":"2004","journal-title":"Scand. J. For. Res."},{"key":"10.1016\/j.jag.2015.04.020_bib0150","doi-asserted-by":"crossref","first-page":"33","DOI":"10.14358\/PERS.80.1.33","article-title":"Basal area and biomass estimates of loblolly pine stands using L-band UAVSAR","volume":"80","author":"Marks","year":"2014","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"10.1016\/j.jag.2015.04.020_bib0155","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.rse.2006.04.019","article-title":"Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction","volume":"104","author":"Morsdorf","year":"2006","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0160","doi-asserted-by":"crossref","first-page":"3999","DOI":"10.1080\/01431160310001654923","article-title":"Narrow band vegetation indices overcome the saturation problem in biomass estimation","volume":"25","author":"Mutanga","year":"2004","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.jag.2015.04.020_bib0165","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1016\/S0034-4257(01)00290-5","article-title":"Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data","volume":"80","author":"Naesset","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0170","doi-asserted-by":"crossref","first-page":"981","DOI":"10.1641\/0006-3568(2003)053[0981:AMRIOD]2.0.CO;2","article-title":"A multiple resource inventory of Delaware using airborne laser data","volume":"53","author":"Nelson","year":"2003","journal-title":"BioScience"},{"key":"10.1016\/j.jag.2015.04.020_bib0175","first-page":"G00E11","article-title":"Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing","volume":"115","author":"Ni-Meister","year":"2010","journal-title":"J. Geophys. Res."},{"key":"10.1016\/j.jag.2015.04.020_bib0180","doi-asserted-by":"crossref","first-page":"930","DOI":"10.1109\/TGRS.2010.2068574","article-title":"Improved biomass estimation using the texture parameters of two high-resolution optical sensors","volume":"49","author":"Nichol","year":"2011","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.jag.2015.04.020_bib0185","series-title":"Measuring Spatial Dependence with Semivariograms","author":"Olea","year":"1997"},{"key":"10.1016\/j.jag.2015.04.020_bib0190","doi-asserted-by":"crossref","first-page":"1095","DOI":"10.3724\/SP.J.1258.2012.01095","article-title":"Inversion of biomass components of the temperate forest using airborne Lidar technology in Xiaoxing\u2019an Mountains, Northeastern of China","volume":"36","author":"Pang","year":"2013","journal-title":"Chin. J. Plant Ecol."},{"key":"10.1016\/j.jag.2015.04.020_bib0195","doi-asserted-by":"crossref","first-page":"968","DOI":"10.1016\/j.rse.2010.11.010","article-title":"Improved forest biomass estimates using ALOS AVNIR-2 texture indices","volume":"115","author":"Sarker","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0200","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1016\/j.isprsjprs.2012.03.002","article-title":"Potential of texture measurements of two-date dual polarization PALSAR data for the improvement of forest biomass estimation","volume":"69","author":"Sarker","year":"2012","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2015.04.020_bib0205","doi-asserted-by":"crossref","first-page":"1325","DOI":"10.1016\/j.rse.2009.12.012","article-title":"Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain","volume":"114","author":"Soenen","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0210","doi-asserted-by":"crossref","first-page":"2317","DOI":"10.1016\/j.rse.2009.06.010","article-title":"Mapping LAI in a Norway spruce forest using airborne laser scanning","volume":"113","author":"Solberg","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0215","doi-asserted-by":"crossref","first-page":"575","DOI":"10.2307\/2532147","article-title":"Universal kriging and cokriging as a regression procedure","volume":"47","author":"Stein","year":"1991","journal-title":"Biometrics"},{"key":"10.1016\/j.jag.2015.04.020_bib0220","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1016\/j.ecoinf.2010.03.004","article-title":"Estimating vegetation height and canopy cover from remotely sensed data with machine learning","volume":"5","author":"Stojanova","year":"2010","journal-title":"Ecol. Inf."},{"key":"10.1016\/j.jag.2015.04.020_bib0225","first-page":"160","article-title":"Estimation of forest above-ground biomass using multi-parameter remote sensing data over a cold and arid area","volume":"14","author":"Tian","year":"2012","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.jag.2015.04.020_bib0230","doi-asserted-by":"crossref","first-page":"340","DOI":"10.1016\/j.rse.2013.08.012","article-title":"Integrating airborne LiDAR and space-borne radar via multivariate kriging to estimate above-ground biomass","volume":"139","author":"Tsui","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0235","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.isprsjprs.2012.02.009","article-title":"Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest","volume":"69","author":"Tsui","year":"2012","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.jag.2015.04.020_bib0240","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.foreco.2005.10.074","article-title":"Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests","volume":"222","author":"Wang","year":"2006","journal-title":"For. Ecol. Manage."},{"key":"10.1016\/j.jag.2015.04.020_bib0245","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.rse.2012.02.001","article-title":"Lidar sampling for large-area forest characterization: a review","volume":"121","author":"Wulder","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0250","doi-asserted-by":"crossref","first-page":"1978","DOI":"10.1016\/j.rse.2011.04.001","article-title":"Characterizing forest canopy structure with lidar composite metrics and machine learning","volume":"115","author":"Zhao","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.jag.2015.04.020_bib0255","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.rse.2008.09.009","article-title":"Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers","volume":"113","author":"Zhao","year":"2009","journal-title":"Remote Sens. Environ."}],"container-title":["International Journal of Applied Earth Observation and Geoinformation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0303243415001063?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0303243415001063?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,5,18]],"date-time":"2022-05-18T02:07:22Z","timestamp":1652839642000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0303243415001063"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,9]]},"references-count":51,"alternative-id":["S0303243415001063"],"URL":"https:\/\/doi.org\/10.1016\/j.jag.2015.04.020","relation":{},"ISSN":["1569-8432"],"issn-type":[{"value":"1569-8432","type":"print"}],"subject":[],"published":{"date-parts":[[2015,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Geostatistical modeling using LiDAR-derived prior knowledge with SPOT-6 data to estimate temperate forest canopy cover and above-ground biomass via stratified random sampling","name":"articletitle","label":"Article Title"},{"value":"International Journal of Applied Earth Observation and Geoinformation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.jag.2015.04.020","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}