{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,12]],"date-time":"2024-07-12T21:31:34Z","timestamp":1720819894313},"reference-count":44,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,4,11]],"date-time":"2022-04-11T00:00:00Z","timestamp":1649635200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100000266","name":"Engineering and Physical Sciences Research Council","doi-asserted-by":"publisher","award":["EP\/S515140\/1"],"id":[{"id":"10.13039\/501100000266","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Intelligent Systems with Applications"],"published-print":{"date-parts":[[2022,5]]},"DOI":"10.1016\/j.iswa.2022.200079","type":"journal-article","created":{"date-parts":[[2022,4,12]],"date-time":"2022-04-12T06:09:29Z","timestamp":1649743769000},"page":"200079","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Investigating the optimisation of real-world and synthetic object detection training datasets through the consideration of environmental and simulation factors"],"prefix":"10.1016","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7543-6197","authenticated-orcid":false,"given":"Callum","family":"Newman","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5765-5188","authenticated-orcid":false,"given":"Jon","family":"Petzing","sequence":"additional","affiliation":[]},{"given":"Yee Mey","family":"Goh","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1052-1873","authenticated-orcid":false,"given":"Laura","family":"Justham","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.iswa.2022.200079_bib0001","doi-asserted-by":"crossref","first-page":"961","DOI":"10.1007\/s11263-018-1070-x","article-title":"Augmented reality meets computer vision: Efficient data generation for urban driving scenes","volume":"126","author":"Alhaija","year":"2018","journal-title":"International Journal of Computer Vision"},{"key":"10.1016\/j.iswa.2022.200079_bib0002","unstructured":"Blender. (2019). Blender 2.81 Manual. (Blender) Retrieved April 12, 2021, from https:\/\/docs.blender.org\/manual\/en\/2.81\/render\/eevee\/introduction.html."},{"issue":"2","key":"10.1016\/j.iswa.2022.200079_bib0003","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1016\/j.patrec.2008.04.005","article-title":"Semantic object classes in video: A high-definition ground truth database","volume":"30","author":"Brostow","year":"2009","journal-title":"Pattern Recognition Letters"},{"key":"10.1016\/j.iswa.2022.200079_bib0004","series-title":"IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"3213","article-title":"The Cityscapes Dataset for Semantic Urban Scene Understanding","author":"Cordts","year":"2016"},{"key":"10.1016\/j.iswa.2022.200079_bib0005","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","article-title":"ImageNet: A large-scale hierarchical image database","author":"Deng","year":"2009"},{"key":"10.1016\/j.iswa.2022.200079_bib0006","series-title":"Proceedings of the IEEE international conference on computer vision","article-title":"Cut, paste and learn: Surprisingly easy synthesis for instance detection","author":"Dwibedi","year":"2017"},{"key":"10.1016\/j.iswa.2022.200079_bib0007","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1007\/s11263-014-0733-5","article-title":"The PASCAL visual object classes challenge: A retrospective","volume":"111","author":"Everingham","year":"2015","journal-title":"International Journal of Computer Vision"},{"issue":"9","key":"10.1016\/j.iswa.2022.200079_bib0008","doi-asserted-by":"crossref","first-page":"1627","DOI":"10.1109\/TPAMI.2009.167","article-title":"Object detection with discriminatively trained part-based models","volume":"32","author":"Felzenswalb","year":"2010","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.iswa.2022.200079_bib0009","series-title":"Robotics: Science and systems","article-title":"Synthesizing training data for object detection in indoor scenes","author":"Georgakis","year":"2017"},{"key":"10.1016\/j.iswa.2022.200079_bib0010","series-title":"Proceedings of the IEEE international conference on computer vision","article-title":"Fast R-CNN","author":"Girshick","year":"2015"},{"issue":"1","key":"10.1016\/j.iswa.2022.200079_bib0011","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1109\/TPAMI.2015.2437384","article-title":"Region-based convolutional networks for accurate object detection and segmentation","volume":"38","author":"Girshick","year":"2015","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.iswa.2022.200079_bib0012","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.iswa.2022.200079_bib0013","series-title":"Proceedings of the European conference on computer vision","article-title":"On pre-trained features and synthetic images for deep learning","author":"Hinterstoisser","year":"2018"},{"key":"10.1016\/j.iswa.2022.200079_bib0014","series-title":"Proceedings of the IEEE\/CVF international conference on computer vision workshop","article-title":"An annotation saved is an annotation earned: Using fully synthetic training for object detection","author":"Hinterstoisser","year":"2019"},{"key":"10.1016\/j.iswa.2022.200079_bib0015","series-title":"Proceedings of the international conference on intelligent computing, information and control systems","first-page":"86","article-title":"Object detection for autonomous vehicle using tensorflow","author":"Howal","year":"2019"},{"key":"10.1016\/j.iswa.2022.200079_bib0016","series-title":"Proceedings of the IEEE international conference on robotics and automation","article-title":"Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks?","author":"Johnson-Roberson","year":"2017"},{"key":"10.1016\/j.iswa.2022.200079_bib0017","series-title":"Proceedings of the IEEE international conference on computer vision","article-title":"Focal loss for dense object detection","author":"Lin","year":"2017"},{"key":"10.1016\/j.iswa.2022.200079_bib0018","series-title":"Proceedings of the European conference on computer vision","article-title":"Microsoft COCO: Common objects in context","author":"Lin","year":"2014"},{"key":"10.1016\/j.iswa.2022.200079_bib0019","series-title":"Proceedings of the European conference on computer vision","article-title":"SSD: Single shot multibox detector","author":"Liu","year":"2016"},{"issue":"Part A","key":"10.1016\/j.iswa.2022.200079_bib0020","doi-asserted-by":"crossref","first-page":"662","DOI":"10.1016\/j.marpolbul.2018.04.045","article-title":"Use of unmanned aerial vehicles for efficient beach litter monitoring","volume":"131","author":"Martin","year":"2018","journal-title":"Marine Pollution Bulletin"},{"key":"10.1016\/j.iswa.2022.200079_bib0021","unstructured":"MathsWorks. (n.d.). Pretrained deep neural networks. (Mathworks) Retrieved April 9, (2021)., from https:\/\/uk.mathworks.com\/help\/deeplearning\/ug\/pretrained-convolutional-neural-networks.html"},{"key":"10.1016\/j.iswa.2022.200079_bib0022","unstructured":"MathsWorks. (n.d.). Deep Learning Toolbox. (MathWorks) Retrieved September 9, (2021)., from https:\/\/uk.mathworks.com\/products\/deep-learning.html"},{"key":"10.1016\/j.iswa.2022.200079_bib0023","doi-asserted-by":"crossref","DOI":"10.3389\/fbuil.2020.00097","article-title":"Deep convolutional networks for construction object detection under different Visual conditions","author":"Nath","year":"2020","journal-title":"Frontiers in Built Environment"},{"key":"10.1016\/j.iswa.2022.200079_bib0024","first-page":"15","article-title":"Developement of an optimised dataset for training a deep neural network","volume":"15","author":"Newman","year":"2021","journal-title":"Advances in Transdisciplinary Engineering"},{"key":"10.1016\/j.iswa.2022.200079_bib0025","unstructured":"Nowruzi, F.E., .Kapoor, P., Kolhatkar, D., Hassanat, F.A., .Laganiere, R., & Rebut, J. (2019). How much data do we actually need: Analyzing object detection performance using synthetic data. Retrieved April 2021, 09, from https:\/\/arxiv.org\/abs\/1907.07061"},{"key":"10.1016\/j.iswa.2022.200079_bib0026","unstructured":"Peniak, M.. (n.d.). Real-time PPE monitoring on the edge powered by the latest ultra-low-power high-performance intel Myriad X VPU overall cost of work-related injury. (Cortexica) Retrieved April 7, 2021, from https:\/\/cortexica.github.io\/intel-rrk-safety\/"},{"key":"10.1016\/j.iswa.2022.200079_bib0027","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","article-title":"You only look once: Unified, real-time object detection","author":"Redmon","year":"2016"},{"key":"10.1016\/j.iswa.2022.200079_bib0028","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","article-title":"YOLO9000: Better, faster, stronger","author":"Redmon","year":"2017"},{"key":"10.1016\/j.iswa.2022.200079_bib0029","unstructured":"Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. Retrieved April 7, 2021, from https:\/\/arxiv.org\/abs\/1804.02767"},{"issue":"6","key":"10.1016\/j.iswa.2022.200079_bib0030","doi-asserted-by":"crossref","first-page":"1137","DOI":"10.1109\/TPAMI.2016.2577031","article-title":"Faster R-CNN: Towards real-time object detection with region proposal networks","volume":"39","author":"Ren","year":"2017","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.iswa.2022.200079_bib0031","series-title":"Proceedings of the international conference on computer vision","article-title":"Playing for Benchmarks","author":"Richter","year":"2017"},{"key":"10.1016\/j.iswa.2022.200079_bib0032","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2019.04.006","article-title":"End-to-end vision-based detection, tracking and activity analysis of earthmoving equipment filmed at ground level","volume":"105","author":"Roberts","year":"2019","journal-title":"Automation in Construction"},{"key":"10.1016\/j.iswa.2022.200079_bib0033","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","article-title":"The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes","author":"Ros","year":"2016"},{"key":"10.1016\/j.iswa.2022.200079_bib0034","series-title":"Proceedings of the British machine vision conference","article-title":"Play and learn: Using video games to train computer vision models","author":"Shafaei","year":"2016"},{"issue":"5","key":"10.1016\/j.iswa.2022.200079_bib0035","doi-asserted-by":"crossref","first-page":"1019","DOI":"10.1109\/TNNLS.2014.2330900","article-title":"Transfer learning for visual categorization: A survey","volume":"26","author":"Shoa","year":"2015","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.iswa.2022.200079_bib0036","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.autcon.2015.10.002","article-title":"Automated annotation for visual recognition of construction resources using synthetic images","volume":"62","author":"Soltani","year":"2016","journal-title":"Automation in Construction"},{"key":"10.1016\/j.iswa.2022.200079_bib0037","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","article-title":"Going deeper with convolutions","author":"Szegedy","year":"2015"},{"key":"10.1016\/j.iswa.2022.200079_bib0038","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.autcon.2014.07.006","article-title":"Image dataset development for measuring construction equipment recognition performance","volume":"48","author":"Tajeen","year":"2014","journal-title":"Autoamtion in Construction"},{"key":"10.1016\/j.iswa.2022.200079_bib0039","series-title":"Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition workshops","article-title":"Falling things: A synthetic dataset for 3D object detection and pose estimation","author":"Tremblay","year":"2018"},{"key":"10.1016\/j.iswa.2022.200079_bib0040","unstructured":"Tsirikoglou, A., Kronander, J., Wrenninge, M., & Unger, J. (2017). Procedural modeling and physically based rendering for synthetic data generation in automotive applications. Retrieved April 7, 2021, from https:\/\/arxiv.org\/abs\/1710.06270"},{"key":"10.1016\/j.iswa.2022.200079_bib0041","unstructured":"Unity. (2020). Unity User Manual 2020.1 (Unity Technologies) Retrieved April 850 12, 2021. https:\/\/docs.unity3d.com\/2020.1\/Documentation\/Manual\/index.html."},{"key":"10.1016\/j.iswa.2022.200079_bib0042","doi-asserted-by":"crossref","DOI":"10.7717\/peerj-cs.222","article-title":"Synthetic dataset generation for object-to-model deep learning in industrial applications","author":"Wong","year":"2019","journal-title":"PeerJ Computer Science"},{"key":"10.1016\/j.iswa.2022.200079_bib0043","series-title":"Chemical process dynamics and controls","article-title":"Design of experiments via taguchi methods - orthogonal arrays","author":"Woolf","year":"2009"},{"key":"10.1016\/j.iswa.2022.200079_bib0044","unstructured":"Wrenninge, M., & Unger, J. (2018). Synscapes: A photorealistic synthetic dataset for street scene parsing. Retrieved April 7, 2021, from https:\/\/arxiv.org\/abs\/1810.08705"}],"container-title":["Intelligent Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2667305322000199?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2667305322000199?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,10,7]],"date-time":"2022-10-07T09:33:24Z","timestamp":1665135204000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2667305322000199"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,5]]},"references-count":44,"alternative-id":["S2667305322000199"],"URL":"https:\/\/doi.org\/10.1016\/j.iswa.2022.200079","relation":{},"ISSN":["2667-3053"],"issn-type":[{"value":"2667-3053","type":"print"}],"subject":[],"published":{"date-parts":[[2022,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Investigating the optimisation of real-world and synthetic object detection training datasets through the consideration of environmental and simulation factors","name":"articletitle","label":"Article Title"},{"value":"Intelligent Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.iswa.2022.200079","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Author(s). Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"200079"}}