{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,12]],"date-time":"2024-10-12T13:40:29Z","timestamp":1728740429910},"reference-count":254,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Systems"],"published-print":{"date-parts":[[2023,3]]},"DOI":"10.1016\/j.is.2023.102178","type":"journal-article","created":{"date-parts":[[2023,1,18]],"date-time":"2023-01-18T20:23:43Z","timestamp":1674073423000},"page":"102178","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":25,"special_numbering":"C","title":["Semi-supervised and un-supervised clustering: A review and experimental evaluation"],"prefix":"10.1016","volume":"114","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6674-4614","authenticated-orcid":false,"given":"Kamal","family":"Taha","sequence":"first","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.is.2023.102178_b1","doi-asserted-by":"crossref","unstructured":"L. Yu, C. Zhou, Determining the best clustering number of K-means based on bootstrap sampling, in: 2018 2nd International Conference on Data Science and Business Analytics, 2018.","DOI":"10.1109\/ICDSBA.2018.00022"},{"issue":"3","key":"10.1016\/j.is.2023.102178_b2","doi-asserted-by":"crossref","first-page":"264","DOI":"10.1145\/331499.331504","article-title":"Data clustering: a review","volume":"31","author":"Jain","year":"1999","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.is.2023.102178_b3","doi-asserted-by":"crossref","first-page":"136322","DOI":"10.1109\/ACCESS.2019.2940896","article-title":"Consensus multiple kernel K-means clustering with late fusion alignment and matrix-induced regularization","volume":"7","author":"Hu","year":"2019","journal-title":"IEEE Access"},{"issue":"5","key":"10.1016\/j.is.2023.102178_b4","first-page":"2021","article-title":"An adaptive robust semi-supervised clustering framework using weighted consensus of random k-means ensemble","volume":"33","author":"Lai","year":"2019","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"6","key":"10.1016\/j.is.2023.102178_b5","doi-asserted-by":"crossref","DOI":"10.1109\/TKDE.2019.2954317","article-title":"Clustering with outlier removal","volume":"33","author":"Liu","year":"2021","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.is.2023.102178_b6","doi-asserted-by":"crossref","unstructured":"Y. Yamada, N. Masuyama, N. Amako, Y. Nojima, C.K. Loo, H. Ishibuchi, Divisive hierarchical clustering based on adaptive resonance theory, in: The 2020 International Symposium on Community-Centric Systems (CcS), 1\u20136, Tokyo, Japan, 2020.","DOI":"10.1109\/CcS49175.2020.9231474"},{"key":"10.1016\/j.is.2023.102178_b7","doi-asserted-by":"crossref","unstructured":"K. Taha, Automatic academic advisor, in: 8th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), 2012, pp. 262\u2013268.","DOI":"10.4108\/icst.collaboratecom.2012.250338"},{"issue":"6","key":"10.1016\/j.is.2023.102178_b8","doi-asserted-by":"crossref","DOI":"10.1109\/TCYB.2019.2938895","article-title":"(2019) A consensus community-based particle swarm optimization for dynamic community detection","volume":"50","author":"Zeng","year":"2020","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.is.2023.102178_b9","doi-asserted-by":"crossref","first-page":"16649","DOI":"10.1109\/ACCESS.2017.2739822","article-title":"Initial shape pool construction for facial landmark localization under occlusion","volume":"5","author":"Wu","year":"2017","journal-title":"IEEE Access"},{"issue":"6","key":"10.1016\/j.is.2023.102178_b10","doi-asserted-by":"crossref","first-page":"1119","DOI":"10.1109\/TCBB.2014.2344668","article-title":"Determining semantically related significant genes","volume":"11","author":"Taha","year":"2014","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinform."},{"issue":"3","key":"10.1016\/j.is.2023.102178_b11","doi-asserted-by":"crossref","first-page":"786","DOI":"10.1109\/TNNLS.2019.2910146","article-title":"Discriminative Fisher embedding dictionary learning algorithm for object recognition","volume":"31","author":"Li","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.is.2023.102178_b12","doi-asserted-by":"crossref","first-page":"27736","DOI":"10.1109\/ACCESS.2021.3058334","article-title":"An imbalanced fault diagnosis method for rolling bearing based on semi-supervised conditional generative adversarial network with spectral normalization","volume":"9","author":"Xu","year":"2021","journal-title":"IEEE Access"},{"issue":"8","key":"10.1016\/j.is.2023.102178_b13","doi-asserted-by":"crossref","first-page":"1577","DOI":"10.1109\/TKDE.2017.2695615","article-title":"Adaptive ensembling of semi-supervised clustering solutions","volume":"29","author":"Yu","year":"2017","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.is.2023.102178_b14","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1214\/ss\/1056397488","article-title":"Class prediction by nearest shrunken with applications to DNA microarrays","volume":"18","author":"Tibshirani","year":"2003","journal-title":"Statist. Sci."},{"year":"2000","series-title":"An Introduction to Support Vector Machines","author":"Cristianini","key":"10.1016\/j.is.2023.102178_b15"},{"issue":"12","key":"10.1016\/j.is.2023.102178_b16","doi-asserted-by":"crossref","first-page":"4934","DOI":"10.1109\/TIP.2015.2472280","article-title":"Joint group sparse PCA for compressed hyperspectral imaging","volume":"24","author":"Khan","year":"2015","journal-title":"IEEE Trans. Image Process."},{"issue":"8","key":"10.1016\/j.is.2023.102178_b17","doi-asserted-by":"crossref","first-page":"1259","DOI":"10.1109\/LGRS.2018.2830795","article-title":"Morphological band selection for hyperspectral imagery","volume":"15","author":"Wang","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.is.2023.102178_b18","article-title":"A survey on semi-supervised learning for delayed partially labelled data streams","author":"Gomes","year":"2022","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.is.2023.102178_b19","doi-asserted-by":"crossref","first-page":"82146","DOI":"10.1109\/ACCESS.2021.3084358","article-title":"A survey on semi-, self-and un-supervised learning for image classification","volume":"9","author":"Schmarje","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.is.2023.102178_b20","doi-asserted-by":"crossref","DOI":"10.1109\/TNNLS.2022.3155478","article-title":"Graph-based semi-supervised learning: A comprehensive review","author":"Song","year":"2022","journal-title":"IEEE Trans. Neural Netw. Learn. Syst. (IF 14.255)"},{"key":"10.1016\/j.is.2023.102178_b21","doi-asserted-by":"crossref","DOI":"10.1109\/TPAMI.2022.3198175","article-title":"Improvability through semi-supervised learning: A survey of theoretical results","author":"Mey","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.is.2023.102178_b22","article-title":"Semi-supervised and un-supervised deep visual learning: A survey","author":"Chen","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)"},{"key":"10.1016\/j.is.2023.102178_b23","first-page":"2168","article-title":"Small data challenges in big data era: A survey of recent progress on un-supervised and semi-supervised methods","author":"Qi","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.is.2023.102178_b24","doi-asserted-by":"crossref","DOI":"10.1145\/2932708","article-title":"A survey and comparative study of tweet sentiment analysis via semi-supervised learning","volume":"49","author":"Silva","year":"2016","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.is.2023.102178_b25","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1007\/s10994-019-05855-6","article-title":"A survey on semi-supervised learning","volume":"109","author":"Engelen","year":"2020","journal-title":"Mach. Learn."},{"key":"10.1016\/j.is.2023.102178_b26","doi-asserted-by":"crossref","unstructured":"N. Simmler, P. Sager, P. Andermatt, R. Chavarriaga, F.P. Schilling, M. Rosenthal, T. Stadelmann, A survey of un-, weakly-, and semi-supervised learning methods for noisy, missing and partial labels in industrial vision applications, in: The 8th Swiss Conference on Data Science (SDS), Lucerne, Switzerland, 9 June 2021, pp. 26\u201331.","DOI":"10.1109\/SDS51136.2021.00012"},{"issue":"1","key":"10.1016\/j.is.2023.102178_b27","first-page":"1","article-title":"A survey on multi-view clustering","volume":"1","author":"Chao","year":"2021","journal-title":"IEEE Trans. Artif. Intell."},{"issue":"3","key":"10.1016\/j.is.2023.102178_b28","doi-asserted-by":"crossref","DOI":"10.1109\/TNN.2005.845141","article-title":"Survey of clustering algorithms","volume":"16","author":"Xu","year":"2005","journal-title":"IEEE Trans. Neural Netw."},{"issue":"3","key":"10.1016\/j.is.2023.102178_b29","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1109\/TETC.2014.2330519","article-title":"A survey of clustering algorithms for big data: Taxonomy and empirical analysis","volume":"2","author":"Tari","year":"2014","journal-title":"IEEE Trans. Emerg. Top. Comput."},{"key":"10.1016\/j.is.2023.102178_b30","first-page":"331","article-title":"Survey on clustering methods: Towards fuzzy clustering for big data","author":"Ayed","year":"2014","journal-title":"Soft Comput. Pattern Recognit."},{"key":"10.1016\/j.is.2023.102178_b31","series-title":"Ann. Data. Sci.","article-title":"A comprehensive survey of clustering algorithms","author":"Xu","year":"2015"},{"key":"10.1016\/j.is.2023.102178_b32","doi-asserted-by":"crossref","first-page":"39501","DOI":"10.1109\/ACCESS.2018.2855437","article-title":"A survey of clustering with deep learning: From the perspective of network architecture","volume":"6","author":"Min","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.is.2023.102178_b33","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1109\/TSMCC.2008.2007252","article-title":"A survey of evolutionary algorithms for clustering","volume":"39","author":"Hruschka","year":"2009","journal-title":"IEEE Trans. Syst. Man Cybern. C"},{"key":"10.1016\/j.is.2023.102178_b34","doi-asserted-by":"crossref","first-page":"31883","DOI":"10.1109\/ACCESS.2019.2903568","article-title":"Survey of state-of-the-art mixed data clustering algorithms","volume":"7","author":"Ahmad","year":"2019","journal-title":"IEEE Access"},{"issue":"2","key":"10.1016\/j.is.2023.102178_b35","doi-asserted-by":"crossref","first-page":"83","DOI":"10.26599\/BDMA.2018.9020003","article-title":"Multi-view clustering: A survey","volume":"1","author":"Yang","year":"2018","journal-title":"Big Data Min. Anal."},{"year":"2005","series-title":"Methods of determining the number of clusters in a data set and a new clustering criterion","author":"Yan","key":"10.1016\/j.is.2023.102178_b36"},{"issue":"2","key":"10.1016\/j.is.2023.102178_b37","first-page":"43","article-title":"Survey on various enhanced K-means algorithms","volume":"3","author":"Twinkle","year":"2014","journal-title":"Int. J. Adv. Res. Comput. Commun. Eng."},{"issue":"1","key":"10.1016\/j.is.2023.102178_b38","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1186\/s40537-019-0258-4","article-title":"Context-aware rule learning from smartphone data: survey, challenges and future directions","volume":"6","author":"Sarker","year":"2019","journal-title":"J. Big Data"},{"key":"10.1016\/j.is.2023.102178_b39","doi-asserted-by":"crossref","unstructured":"Y. Mehmood, N. Aziz, F. Riaz, H. Iqbal, W. Shahzad, PSO-based clustering techniques to solve multimodal optimization problems: A survey, in: IEEE International Conference on Power, Energy and Smart Grid, 2018.","DOI":"10.1109\/ICPESG.2018.8417315"},{"key":"10.1016\/j.is.2023.102178_b40","unstructured":"M.K. Gupta, P. Chandra, A comparative study of clustering algorithms, in: 6th IEEE International Conference on Computing for Sustainable Global Development, 2019."},{"key":"10.1016\/j.is.2023.102178_b41","doi-asserted-by":"crossref","unstructured":"Z. Zou, B. Liu, Survey on clustering-based image segmentation techniques, in: IEEE 20th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2016, 2016, pp. 106\u2013110.","DOI":"10.1109\/CSCWD.2016.7565972"},{"key":"10.1016\/j.is.2023.102178_b42","doi-asserted-by":"crossref","first-page":"264","DOI":"10.1145\/331499.331504","article-title":"Data clustering: a review","volume":"31","author":"Jain","year":"1999","journal-title":"ACM Comput. Surv., (CSUR)"},{"issue":"4","key":"10.1016\/j.is.2023.102178_b43","doi-asserted-by":"crossref","first-page":"3468","DOI":"10.1109\/TSG.2021.3061395","article-title":"Adversarial semi-supervised learning for diagnosing faults and attacks in power grids","volume":"12","author":"Farajzadeh-Zanjani","year":"2021","journal-title":"IEEE Trans. Smart Grid"},{"key":"10.1016\/j.is.2023.102178_b44","doi-asserted-by":"crossref","unstructured":"W. Wang, et al. Learning from incomplete labeled data via adversarial data generation, in: 2020 IEEE International Conference on Data Mining (ICDM), 2020, pp. 1316\u20131321.","DOI":"10.1109\/ICDM50108.2020.00170"},{"issue":"1s","key":"10.1016\/j.is.2023.102178_b45","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3485473","article-title":"Fine-grained adversarial semi-supervised learning","volume":"18","author":"Mugnai","year":"2022","journal-title":"ACM Trans. Multimed. Comput. Commun. Appl."},{"key":"10.1016\/j.is.2023.102178_b46","doi-asserted-by":"crossref","unstructured":"J. Chien, Y. Lyu, Partially adversarial learning and adaptation, in: 27th European Signal Processing Conference, 2019, pp. 1\u20135.","DOI":"10.23919\/EUSIPCO.2019.8903147"},{"key":"10.1016\/j.is.2023.102178_b47","doi-asserted-by":"crossref","DOI":"10.1109\/TKDE.2022.3144250","article-title":"Graph transfer learning via adversarial domain adaptation with graph convolution","author":"Dai","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.is.2023.102178_b48","doi-asserted-by":"crossref","first-page":"27736","DOI":"10.1109\/ACCESS.2021.3058334","article-title":"An imbalanced fault diagnosis method for rolling bearing based on semi-supervised conditional generative adversarial network with spectral normalization","volume":"9","author":"Xu","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.is.2023.102178_b49","series-title":"AISTATS\u201910","first-page":"249","article-title":"Understanding the difficulty of training deep feedforward neural networks","author":"Xavier","year":"2010"},{"issue":"3","key":"10.1016\/j.is.2023.102178_b50","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1109\/TPAMI.2018.2882805","article-title":"Adversarial action prediction networks","volume":"42","author":"Kong","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.is.2023.102178_b51","doi-asserted-by":"crossref","unstructured":"X. Zhang, L. Yao, F. Yuan, Adversarial variational embedding for robust semi-supervised learning, in: ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4\u20138 2019, USA, 2019, pp. 139\u2013147.","DOI":"10.1145\/3292500.3330966"},{"issue":"6","key":"10.1016\/j.is.2023.102178_b52","doi-asserted-by":"crossref","first-page":"3071","DOI":"10.1109\/TGRS.2017.2650938","article-title":"A novel semisupervised active-learning algorithm for hyperspectral image classification","volume":"55","author":"Wang","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.is.2023.102178_b53","first-page":"2605","article-title":"Cluster and scatter: A multi-grained active semi-supervised learning framework for scalable person re-identification","author":"Hu","year":"2021","journal-title":"ACM Multimedia"},{"key":"10.1016\/j.is.2023.102178_b54","doi-asserted-by":"crossref","unstructured":"B. Nogueira, Y. Tomas, R. Marcacini, Integrating distance metric learning and cluster-level constraints in semi-supervised clustering, in: 2017 International Joint Conference on Neural Networks (IJCNN), 2017, pp. 4118\u20134125.","DOI":"10.1109\/IJCNN.2017.7966376"},{"issue":"11","key":"10.1016\/j.is.2023.102178_b55","doi-asserted-by":"crossref","first-page":"1725","DOI":"10.1109\/TASLP.2019.2929859","article-title":"General sequence teacher\u2013student learning","volume":"27","author":"Wong","year":"2019","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"10.1016\/j.is.2023.102178_b56","doi-asserted-by":"crossref","first-page":"7952","DOI":"10.1109\/TIP.2021.3112039","article-title":"TEST: Triplet ensemble student-teacher model for un-supervised person re-identification","volume":"30","author":"Li","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.is.2023.102178_b57","doi-asserted-by":"crossref","unstructured":"A. Hatefi, X. Vu, M. Bhuyan, F. Drewes, Cformer: Semi-supervised text clustering based on pseudo labeling, in: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 3078\u20133082.","DOI":"10.1145\/3459637.3482073"},{"key":"10.1016\/j.is.2023.102178_b58","doi-asserted-by":"crossref","unstructured":"Zahera, et al. ASSET: A semi-supervised approach for entity typing in knowledge graphs, in: Knowledge Capture Conference, 2021.","DOI":"10.1145\/3460210.3493563"},{"key":"10.1016\/j.is.2023.102178_b59","doi-asserted-by":"crossref","unstructured":"H. Tzaban, I. Guy, A. Greenstein-Messica, A. Dagan, L. Rokach, B. Shapira, Product bundle identification using semi-supervised learning, in: ACM SIGIR Conference on Research and Development in Information Retrieval, USA, 2020, pp. 791\u2013800.","DOI":"10.1145\/3397271.3401128"},{"key":"10.1016\/j.is.2023.102178_b60","doi-asserted-by":"crossref","unstructured":"Fazakis, et al. A semi-supervised regressor based on model trees, in: ACM International Conference Proceeding Series, 2018.","DOI":"10.1145\/3200947.3201033"},{"key":"10.1016\/j.is.2023.102178_b61","doi-asserted-by":"crossref","unstructured":"T. Yang, N. Pasquier, A. Hom, L. Dolle, F. Precioso, Semi-supervised consensus clustering based on frequent closed itemsets, in: The 29th ACM International Conference on Information & Knowledge Management (CIKM \u201920), 2020, pp. 3341\u20133344.","DOI":"10.1145\/3340531.3417453"},{"key":"10.1016\/j.is.2023.102178_b62","doi-asserted-by":"crossref","unstructured":"U. Akujuobi, Q. Zhang, H. Yufei, X. Zhang, Recurrent attention walk for semi-supervised classification, in: Proceedings of the 13th International Conference on Web Search and Data Mining (WSDM \u201920), New York, NY, USA, 2020, pp. 16\u201324.","DOI":"10.1145\/3336191.3371853"},{"key":"10.1016\/j.is.2023.102178_b63","doi-asserted-by":"crossref","unstructured":"Che, et al. Simultaneously learning adaptive neighbors and clustering label via semi-supervised NMF. in: Proceedings of the 3rd International Conference on Computer Science and Application Engineering (CSAE 2019), 2019, pp. 1\u20136.","DOI":"10.1145\/3331453.3361650"},{"key":"10.1016\/j.is.2023.102178_b64","doi-asserted-by":"crossref","unstructured":"S. Kang, J. Hwang, D. Lee, H. Yu, Semi-supervised learning for cross-domain recommendation to cold-start users, in: The 28th ACM International Conference on Information and Knowledge Management (CIKM \u201919). New York, NY, USA, 2019, pp. 1563\u20131572.","DOI":"10.1145\/3357384.3357914"},{"key":"10.1016\/j.is.2023.102178_b65","doi-asserted-by":"crossref","unstructured":"Liu, et al. Strongly Local Hypergraph Diffusions for Clustering and Semi-supervised Learning, WWW 2021: 2092-2103.","DOI":"10.1145\/3442381.3449887"},{"key":"10.1016\/j.is.2023.102178_b66","doi-asserted-by":"crossref","unstructured":"H. Sousa, M. de\u00a0Souto, R. Kuroshu, C. Ana\u00a0Lorena, Automatic recovering the number k of clusters in the data by active query selection, in: Proceedings of the 36th Annual ACM Symposium on Applied Computing (SAC \u201921), 2021, pp. 1021\u20131029.","DOI":"10.1145\/3412841.3441978"},{"issue":"3","key":"10.1016\/j.is.2023.102178_b67","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1109\/TFUZZ.2019.2911492","article-title":"Reinforced fuzzy clustering-based ensemble neural networks","volume":"28","author":"Kim","year":"2020","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.is.2023.102178_b68","doi-asserted-by":"crossref","unstructured":"Y. Li, J. Ye, Learning adversarial networks for semi-supervised text classification via policy gradient, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD \u201918), 2018, pp. 1715\u20131723.","DOI":"10.1145\/3219819.3219956"},{"key":"10.1016\/j.is.2023.102178_b69","doi-asserted-by":"crossref","unstructured":"Y. Feng, M. Fan, M. Sun, P. Li, A reinforced semi-supervised neural network for helpful review identification, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM \u201920), 2020, pp. 2021\u20132024.","DOI":"10.1145\/3340531.3412101"},{"issue":"11","key":"10.1016\/j.is.2023.102178_b70","doi-asserted-by":"crossref","first-page":"3293","DOI":"10.1109\/TFUZZ.2020.3018190","article-title":"Design of reinforced hybrid fuzzy rule-based neural networks driven to inhomogeneous neurons and tournament selection","volume":"29","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.is.2023.102178_b71","doi-asserted-by":"crossref","first-page":"14024","DOI":"10.1109\/ACCESS.2020.2965766","article-title":"CODES: Efficient incremental semi-supervised classification over drifting and evolving social streams","volume":"8","author":"Bi","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.is.2023.102178_b72","doi-asserted-by":"crossref","unstructured":"G. Casalino, G. Castellano, C. Mencar, Incremental adaptive semi-supervised fuzzy clustering for data stream classification, in: 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), 2018, pp. 1\u20137.","DOI":"10.1109\/EAIS.2018.8397172"},{"issue":"7","key":"10.1016\/j.is.2023.102178_b73","doi-asserted-by":"crossref","first-page":"1069","DOI":"10.1109\/LSP.2018.2843281","article-title":"Adaptive matrix sketching and clustering for semisupervised incremental learning","volume":"25","author":"Zhang","year":"2018","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.is.2023.102178_b74","doi-asserted-by":"crossref","unstructured":"B. Gu, X. Yuan, S. Chen, H. Huang, New incremental learning algorithm for semi-supervised support vector machine, in: The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD \u201918), 2018, pp. 1475\u20131484.","DOI":"10.1145\/3219819.3220092"},{"key":"10.1016\/j.is.2023.102178_b75","doi-asserted-by":"crossref","unstructured":"Y. Nakajima, B. Kang, H. Saito, K. Kitani, Incremental class discovery for semantic segmentation with RGBD sensing, in: 2019 IEEE\/CVF International Conference on Computer Vision (ICCV), 2019, pp. 972\u2013981.","DOI":"10.1109\/ICCV.2019.00106"},{"year":"2020","series-title":"NodeAug: Semi-Supervised Node Classification with Data Augmentation","author":"Wang","key":"10.1016\/j.is.2023.102178_b76"},{"key":"10.1016\/j.is.2023.102178_b77","doi-asserted-by":"crossref","first-page":"76984","DOI":"10.1109\/ACCESS.2018.2884508","article-title":"Adaptive and incremental-clustering anomaly detection algorithm for VMs under cloud platform runtime environment","volume":"6","author":"Zhang","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.is.2023.102178_b78","doi-asserted-by":"crossref","first-page":"72402","DOI":"10.1109\/ACCESS.2018.2880451","article-title":"Configuration-based fingerprinting of mobile device using incremental clustering","volume":"6","author":"Ding","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.is.2023.102178_b79","doi-asserted-by":"crossref","unstructured":"A. Mitra, P. Vijayan, R. Sanasam, D. Goswami, S. Parthasarathy, B. Ravindran, Semi-supervised deep learning for multiplex networks, in: The 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD \u201921), 2021, pp. 1234\u20131244.","DOI":"10.1145\/3447548.3467443"},{"key":"10.1016\/j.is.2023.102178_b80","doi-asserted-by":"crossref","unstructured":"H. Xue, J. Peng, J. Li, X. Shang, Integrating multi-network topology via deep semi-supervised node embedding, in Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM \u201919), 2019, pp. 2117\u20132120.","DOI":"10.1145\/3357384.3358164"},{"key":"10.1016\/j.is.2023.102178_b81","doi-asserted-by":"crossref","unstructured":"L. Vilhagra, E. Fernandes, E. Nogueira, TextCSN: a semi-supervised approach for text clustering using pairwise constraints and convolutional siamese network, in: Proceedings of the 35th Annual ACM Symposium on Applied Computing, 2020, pp. 1135\u20131142.","DOI":"10.1145\/3341105.3374018"},{"key":"10.1016\/j.is.2023.102178_b82","doi-asserted-by":"crossref","unstructured":"M. Ding, J. Tang, J. Zhang, Semi-supervised learning on graphs with generative adversarial nets, in: Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM \u201918), 2018, pp. 913\u2013922.","DOI":"10.1145\/3269206.3271768"},{"key":"10.1016\/j.is.2023.102178_b83","doi-asserted-by":"crossref","unstructured":"K. Voevodski, Semi-supervised max-sum clustering, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM \u201920), 2020, pp. 1495\u20131504.","DOI":"10.1145\/3340531.3411896"},{"key":"10.1016\/j.is.2023.102178_b84","doi-asserted-by":"crossref","unstructured":"J. Gertrudes, A. Zimek, J. Sander, R. Campellom, A unified framework of density-based clustering for semi-supervised classification, in: The 30th International Conference on Scientific and Statistical Database Management (SSDBM), 2018, 11, pp. 1\u201312.","DOI":"10.1145\/3221269.3223037"},{"key":"10.1016\/j.is.2023.102178_b85","doi-asserted-by":"crossref","DOI":"10.1109\/TKDE.2022.3145347","article-title":"Semi-supervised clustering under a compact-cluster assumption","author":"Jiang","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.is.2023.102178_b86","first-page":"583","article-title":"Cluster\u2014A knowledge reuse framework for combining multiple partitions","volume":"3","author":"Strehl","year":"2002","journal-title":"J. Mach. Learn. Res."},{"issue":"4","key":"10.1016\/j.is.2023.102178_b87","first-page":"1389","article-title":"Co-clustering ensembles based on multiple relevance measures","volume":"33","author":"Yu","year":"2021","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.is.2023.102178_b88","doi-asserted-by":"crossref","first-page":"51285","DOI":"10.1109\/ACCESS.2020.2979915","article-title":"Co-clustering ensemble based on bilateral K-means algorithm","volume":"8","author":"Yang","year":"2020","journal-title":"IEEE Access"},{"issue":"6","key":"10.1016\/j.is.2023.102178_b89","doi-asserted-by":"crossref","first-page":"2005","DOI":"10.1109\/TCBB.2019.2918523","article-title":"Ensembling of gene clusters utilizing deep learning and protein-protein interaction information","volume":"17","author":"Dutta","year":"2020","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinform."},{"key":"10.1016\/j.is.2023.102178_b90","doi-asserted-by":"crossref","first-page":"80855","DOI":"10.1109\/ACCESS.2020.2989219","article-title":"Methods that optimize multi-objective problems: A survey and experimental evaluation","volume":"8","author":"Taha","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.is.2023.102178_b91","doi-asserted-by":"crossref","unstructured":"H. Zhang, L. Du, Clustering ensemble via cluster-wise optimization graph learning, in: 2021 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE), 2021, pp. 1\u20136.","DOI":"10.1109\/RASSE53195.2021.9686881"},{"issue":"1","key":"10.1016\/j.is.2023.102178_b92","doi-asserted-by":"crossref","first-page":"508","DOI":"10.1109\/TSMC.2018.2876202","article-title":"Enhanced ensemble clustering via fast propagation of cluster-wise similarities","volume":"51","author":"Huang","year":"2018","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.is.2023.102178_b93","doi-asserted-by":"crossref","first-page":"166730","DOI":"10.1109\/ACCESS.2020.3022718","article-title":"GRACE: A graph-based cluster ensemble approach for single-cell RNA-seq data clustering","volume":"8","author":"Guan","year":"2020","journal-title":"IEEE Access"},{"issue":"6","key":"10.1016\/j.is.2023.102178_b94","doi-asserted-by":"crossref","first-page":"1212","DOI":"10.1109\/TKDE.2019.2903410","article-title":"Ultra-scalable spectral clustering and ensemble clustering","volume":"32","author":"Huang","year":"2020","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.is.2023.102178_b95","doi-asserted-by":"crossref","unstructured":"Li, et al. Ensemble learning for spectral clustering, in: 2020 IEEE International Conference on Data Mining (ICDM), 2020, pp. 1094\u20131099.","DOI":"10.1109\/ICDM50108.2020.00131"},{"key":"10.1016\/j.is.2023.102178_b96","doi-asserted-by":"crossref","unstructured":"Safari, et al. Ensemble P-spectral semi-supervised clustering, in: Inter Conf on Machine Vision and Image Processing, 2020, pp. 1\u20135.","DOI":"10.1109\/MVIP49855.2020.9116885"},{"key":"10.1016\/j.is.2023.102178_b97","article-title":"Fast self-supervised clustering with anchor graph","author":"Wang","year":"2022","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"5","key":"10.1016\/j.is.2023.102178_b98","doi-asserted-by":"crossref","first-page":"698","DOI":"10.14778\/3377369.3377378","article-title":"MEGA: multi-view semi-supervised clustering of hypergraphs","volume":"13","author":"Whang","year":"2020","journal-title":"Proc. VLDB Endow."},{"key":"10.1016\/j.is.2023.102178_b99","doi-asserted-by":"crossref","unstructured":"H. Echoukairi, A. Kada, K. Bouragba, M. Ouzzif, A novel centralized clustering approach based on K-means algorithm for wireless sensor network, in: 2017 Computing Conference, 2017, pp. 1259\u20131262.","DOI":"10.1109\/SAI.2017.8252252"},{"key":"10.1016\/j.is.2023.102178_b100","doi-asserted-by":"crossref","unstructured":"M. Lehsaini, M. Benmahdi, An improved K-means cluster-based routing scheme for wireless sensor networks, in: 2018 International Symposium on Programming and Systems (ISPS), 2018, pp. 1\u20136.","DOI":"10.1109\/ISPS.2018.8379004"},{"key":"10.1016\/j.is.2023.102178_b101","doi-asserted-by":"crossref","unstructured":"Z. Ren, J. Chen, L. Ye, C. Wang, Y. Liu, W. Zhou, Application of RBF neural network optimized based on K-means cluster algorithm in fault diagnosis, in: 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 2018, pp. 2492\u20132496.","DOI":"10.23919\/ICEMS.2018.8549274"},{"key":"10.1016\/j.is.2023.102178_b102","doi-asserted-by":"crossref","unstructured":"B. Kumar, U.K. Tiwari, S. Kumar, Energy efficient quad clustering based on kmeans algorithm for wireless sensor network, in: The 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India, 2020.","DOI":"10.1109\/PDGC50313.2020.9315853"},{"key":"10.1016\/j.is.2023.102178_b103","doi-asserted-by":"crossref","unstructured":"L. Voronova, V. Voronov, N. Mohammad, Modeling the clustering of wireless sensor networks using the K-means method, in: International Conf. on Quality Management, Transport & Information Security, Information Technologies, 2021, pp. 740\u2013745.","DOI":"10.1109\/ITQMIS53292.2021.9642747"},{"key":"10.1016\/j.is.2023.102178_b104","doi-asserted-by":"crossref","unstructured":"B. Xu, J. Huang, L. Hou, H. Shen, J. Gao, X. Cheng, Label-consistency based graph neural networks for semi-supervised node classification, in: 43rd International ACM SIGIR conference on research and development in Information Retrieval, 2020, pp. 1897\u20131900.","DOI":"10.1145\/3397271.3401308"},{"key":"10.1016\/j.is.2023.102178_b105","article-title":"Weup: Wireless user perception based on dimensional reduction and semi-supervised clustering","author":"Zhang","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.is.2023.102178_b106","doi-asserted-by":"crossref","unstructured":"R. Li, J. Sun, A fuzzy clustering algorithm based on complex synaptic neural network, in: 2017 IEEE 17th International Conference on Communication Technology (ICCT), 2017, pp. 1291\u20131295.","DOI":"10.1109\/ICCT.2017.8359843"},{"key":"10.1016\/j.is.2023.102178_b107","doi-asserted-by":"crossref","unstructured":"X. Li, Y. Dai, Prediction model of hot rolled strip quality based on K-means clustering and neural network, in: 2018 11th International Symposium on Computational Intelligence and Design (ISCID), 2018, pp. 150\u2013153.","DOI":"10.1109\/ISCID.2018.10135"},{"key":"10.1016\/j.is.2023.102178_b108","doi-asserted-by":"crossref","unstructured":"K. Settaluri, E. Fallon, Fully automated analog sub-circuit clustering with graph convolutional neural networks, in: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2020, pp. 1714\u20131715.","DOI":"10.23919\/DATE48585.2020.9116513"},{"issue":"5","key":"10.1016\/j.is.2023.102178_b109","first-page":"1877","article-title":"An adaptive robust semi-supervised clustering framework using weighted consensus of random K-means ensemble","volume":"33","author":"Lai","year":"2021","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"3","key":"10.1016\/j.is.2023.102178_b110","doi-asserted-by":"crossref","first-page":"701","DOI":"10.1109\/TKDE.2015.2499200","article-title":"Incremental semi-supervised clustering ensemble for high dimensional data clustering","volume":"28","author":"Yu","year":"2016","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.is.2023.102178_b111","doi-asserted-by":"crossref","first-page":"17926","DOI":"10.1109\/ACCESS.2019.2963306","article-title":"Adaptive regularized semi-supervised clustering ensemble","volume":"8","author":"Luo","year":"2020","journal-title":"IEEE Access"},{"issue":"8","key":"10.1016\/j.is.2023.102178_b112","doi-asserted-by":"crossref","first-page":"1577","DOI":"10.1109\/TKDE.2017.2695615","article-title":"Adaptive ensembling of semi-supervised clustering solutions","volume":"29","author":"Yu","year":"2017","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.is.2023.102178_b113","doi-asserted-by":"crossref","unstructured":"W. Zhan, M. Zhang, Inductive semi-supervised multi-label learning with co-training, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD \u201917), 2017, pp. 1305\u20131314.","DOI":"10.1145\/3097983.3098141"},{"issue":"4","key":"10.1016\/j.is.2023.102178_b114","doi-asserted-by":"crossref","first-page":"1980","DOI":"10.1109\/TKDE.2020.2997938","article-title":"SCHAIN-IRAM: An efficient and effective semi-supervised clustering algorithm for attributed heterogeneous information networks","volume":"34","author":"Li","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.is.2023.102178_b115","doi-asserted-by":"crossref","unstructured":"X. Li, Y. Wu, M. Ester, B. Kao, X. Wang, Y. Zheng, Semi-supervised clustering in attributed heterogeneous information networks, in: Proceedings of the 26th International Conference on World Wide Web (WWW \u201917), 2017, pp. 1621\u20131629.","DOI":"10.1145\/3038912.3052576"},{"key":"10.1016\/j.is.2023.102178_b116","first-page":"108","article-title":"Semi-supervised deep generative modelling of incomplete multi-modality emotional data","author":"Du","year":"2018","journal-title":"ACM Multimed"},{"key":"10.1016\/j.is.2023.102178_b117","doi-asserted-by":"crossref","unstructured":"W. Cai, S. Xu, J. Liu, Q. Du, H. Chen, Y. Lin, An adaptive approach of feature selection applied to semi-supervised fuzzy clustering, in: The 4th International Conf. on Electronic Information Technology & Computer Engineering (EITCE), 2020, pp. 723\u2013727.","DOI":"10.1145\/3443467.3443843"},{"key":"10.1016\/j.is.2023.102178_b118","doi-asserted-by":"crossref","unstructured":"S. Steger, B. Geiger, M. \u015amieja, Semi-supervised clustering via information-theoretic markov chain aggregation, in: Proceedings of the 37th ACM\/SIGAPP Symposium on Applied Computing (SAC \u201922), 2022, pp. 1136\u20131139.","DOI":"10.1145\/3477314.3507181"},{"key":"10.1016\/j.is.2023.102178_b119","doi-asserted-by":"crossref","unstructured":"R. Deng, Y. Chen, R. Han, H. Xiao, X. Li, Semi-supervised LDA based method for similarity distance metric learning, in: 2021 The 4th International Conference on Information Science and Systems (ICISS 2021), 2021, pp. 97\u2013101.","DOI":"10.1145\/3459955.3460606"},{"key":"10.1016\/j.is.2023.102178_b120","article-title":"Progressive self-supervised clustering with novel category discovery","author":"Wang","year":"2022","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.is.2023.102178_b121","doi-asserted-by":"crossref","unstructured":"D. Chen, C. Song, Research on MDS and semi-supervised clustering algorithm, in: 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI), 2021, pp. 97\u2013101.","DOI":"10.1109\/CEI52496.2021.9574517"},{"key":"10.1016\/j.is.2023.102178_b122","doi-asserted-by":"crossref","unstructured":"W. Tang, H. Xiong, S. Zhong, J. Wu, Enhancing semi-supervised clustering: a feature projection perspective, in: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD \u201907), 2007, pp. 707\u2013716.","DOI":"10.1145\/1281192.1281268"},{"key":"10.1016\/j.is.2023.102178_b123","doi-asserted-by":"crossref","unstructured":"H. Xia, T. Jing, C. Chen, Z. Ding, Semi-supervised domain adaptive retrieval via discriminative hashing learning, in: Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 3853\u20133861.","DOI":"10.1145\/3474085.3475526"},{"issue":"2","key":"10.1016\/j.is.2023.102178_b124","doi-asserted-by":"crossref","first-page":"983","DOI":"10.1109\/TKDE.2020.2986965","article-title":"Variable-length subsequence clustering in time series","volume":"34","author":"Duan","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"11","key":"10.1016\/j.is.2023.102178_b125","doi-asserted-by":"crossref","first-page":"4606","DOI":"10.1109\/JSTARS.2019.2950406","article-title":"Constrained distance-based clustering for satellite image time-series","volume":"12","author":"Lampert","year":"2019","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.is.2023.102178_b126","doi-asserted-by":"crossref","unstructured":"H. Ji, J. Wang, Y. Han, Q. Zhao, Fast fuzzy clustering algorithm for time series in industrial processes, in: 2019 IEEE 5th International Conference on Computer and Communications (ICCC), 2019, pp. 141\u2013146.","DOI":"10.1109\/ICCC47050.2019.9064295"},{"issue":"7","key":"10.1016\/j.is.2023.102178_b127","doi-asserted-by":"crossref","first-page":"4201","DOI":"10.1109\/TSMC.2019.2931731","article-title":"A fast semi-supervised clustering framework for large-scale time series data","volume":"51","author":"He","year":"2021","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.is.2023.102178_b128","doi-asserted-by":"crossref","unstructured":"Jha, et al. Clustering to forecast sparse time-series data, in: IEEE 31st Intern. Conference on Data Engineering, 2015, pp. 1388\u20131399.","DOI":"10.1109\/ICDE.2015.7113385"},{"key":"10.1016\/j.is.2023.102178_b129","doi-asserted-by":"crossref","DOI":"10.1109\/TFUZZ.2022.3173684","article-title":"Time series forecasting via fuzzy-probabilistic approach with evolving clustering-based granulation","author":"Wang","year":"2022","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"2","key":"10.1016\/j.is.2023.102178_b130","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1109\/TKDE.2019.2931687","article-title":"Incremental factorization of big time series data with blind factor approximation","volume":"33","author":"Chen","year":"2019","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.is.2023.102178_b131","doi-asserted-by":"crossref","unstructured":"D. Rajendran, S. Jangiti, S. Muralidharan, M. Thendral, Incremental MapReduce for K-medoids clustering of big time-series data, in: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), 2018, pp. 1143-1146.","DOI":"10.1109\/ICOEI.2018.8553756"},{"key":"10.1016\/j.is.2023.102178_b132","doi-asserted-by":"crossref","unstructured":"H. Thuy, D. Anh, V. Chau, Incremental clustering for time series data based on an improved leader algorithm, in: 2019 IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF), 2019, pp. 1\u20136.","DOI":"10.1109\/RIVF.2019.8713702"},{"key":"10.1016\/j.is.2023.102178_b133","doi-asserted-by":"crossref","unstructured":"M. Wurzenberger, F. Skopik, M. Landauer, P. Greitbauer, R. Fiedler, W. Kastner, Incremental clustering for semi-supervised anomaly detection applied on log data, in: The 12th International Conf. on Availability, Reliability and Security (ARES), 2017, pp. 1\u20136.","DOI":"10.1145\/3098954.3098973"},{"issue":"2","key":"10.1016\/j.is.2023.102178_b134","doi-asserted-by":"crossref","first-page":"983","DOI":"10.1109\/TKDE.2020.2986965","article-title":"Variable-length subsequence clustering in time series","volume":"34","author":"Duan","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.is.2023.102178_b135","doi-asserted-by":"crossref","unstructured":"J. Wang, Y. Zhao, Time series K-nearest neighbors classifier based on fast dynamic time warping, in: 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), 2021, pp. 751\u2013754.","DOI":"10.1109\/ICAICA52286.2021.9497898"},{"issue":"7","key":"10.1016\/j.is.2023.102178_b136","doi-asserted-by":"crossref","first-page":"8396","DOI":"10.1109\/TITS.2021.3080322","article-title":"Driver glance behavior modeling based on semi-supervised clustering and piecewise aggregate representation","volume":"23","author":"Huang","year":"2022","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.is.2023.102178_b137","doi-asserted-by":"crossref","unstructured":"D. Miller, N. Ghalyan, A. Ray, A locally optimal algorithm for estimating a generating partition from an observed time series, in: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), 2017, pp. 1\u20136.","DOI":"10.1109\/MLSP.2017.8168162"},{"key":"10.1016\/j.is.2023.102178_b138","doi-asserted-by":"crossref","unstructured":"Z. Siddiquee, A. Mueen, SeiSMo: Semi-supervised time series motif discovery for seismic signal detection, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM \u201919), 2019, pp. 99\u2013108.","DOI":"10.1145\/3357384.3357931"},{"key":"10.1016\/j.is.2023.102178_b139","doi-asserted-by":"crossref","unstructured":"Y. Ang, Y. Qian, S. Gao, Factory energy data imputation by nearest neighbor search with clustering, in: 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), 2020, pp. 302\u2013307.","DOI":"10.1109\/AEECA49918.2020.9213497"},{"key":"10.1016\/j.is.2023.102178_b140","doi-asserted-by":"crossref","unstructured":"H. Xiao, X. Liu, Y. Song, Efficient path prediction for semi-supervised and weakly supervised hierarchical text classification, in: The World Wide Web Conference, 2019, pp. 3370-3376.","DOI":"10.1145\/3308558.3313658"},{"key":"10.1016\/j.is.2023.102178_b141","doi-asserted-by":"crossref","unstructured":"R. Florence, B. Nogueira, R. Marcacini, Constrained hierarchical clustering for news events, in: Proceedings of the 21st International Database Engineering & Applications Symposium (IDEAS 2017), 2017, pp. 49\u201356.","DOI":"10.1145\/3105831.3105859"},{"key":"10.1016\/j.is.2023.102178_b142","doi-asserted-by":"crossref","unstructured":"K. Qin, Y. Qin, Hierarchical cluster-based adaptive model for semi-supervised classification of data stream with concept drift, in: Proceedings of the 2019 International Conference on Artificial Intelligence and Computer Science (AICS 2019), 2019, pp. 41\u201349.","DOI":"10.1145\/3349341.3349366"},{"key":"10.1016\/j.is.2023.102178_b143","doi-asserted-by":"crossref","unstructured":"H. Liu, Y. Jia, J. Hou, Q. Zhang, Imbalance-aware pairwise constraint propagation, in: Proceedings of the 27th ACM International Conference on Multimedia (MM \u201919), 2019, pp. 1605\u20131613.","DOI":"10.1145\/3343031.3350968"},{"key":"10.1016\/j.is.2023.102178_b144","doi-asserted-by":"crossref","unstructured":"N. Widmann, S. Verberne, Graph-based semi-supervised learning for text classification, in: Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval (ICTIR \u201917), 2017, pp. 59\u201366.","DOI":"10.1145\/3121050.3121055"},{"key":"10.1016\/j.is.2023.102178_b145","doi-asserted-by":"crossref","unstructured":"R. Amutha, D. Kumar, Semi-supervised clustering algorithm for rumor minimization and propagation with classification in social networks, in: 2020 International Conference on Inventive Computation Technologies (ICICT), 2020, pp. 500\u2013507.","DOI":"10.1109\/ICICT48043.2020.9112495"},{"issue":"5","key":"10.1016\/j.is.2023.102178_b146","doi-asserted-by":"crossref","first-page":"2601","DOI":"10.1109\/TCYB.2019.2907002","article-title":"Fuzzy clustering to identify clusters at differ ent levels of fuzziness: an evolutionary multiobjective optimization approach","volume":"51","author":"Gupta","year":"2021","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.is.2023.102178_b147","doi-asserted-by":"crossref","unstructured":"Behrooz Kamgar-Parsi, Penalized k-means algorithms for finding the correct number of clusters in a dataset, in: 25th International Conference on Pattern Recognition (ICPR) Milan, Italy, Jan 10-15, 2021.","DOI":"10.1109\/ICPR48806.2021.9412777"},{"issue":"8","key":"10.1016\/j.is.2023.102178_b148","doi-asserted-by":"crossref","first-page":"4202","DOI":"10.1109\/TGRS.2015.2393357","article-title":"Adaptive multiobjective memetic fuzzy clustering algorithm for remote sensing imagery","volume":"53","author":"Ma","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"5","key":"10.1016\/j.is.2023.102178_b149","article-title":"Motif and hypergraph correlation clustering","volume":"66","author":"Pan","year":"2020","journal-title":"IEEE Trans. Inform. Theory"},{"issue":"4","key":"10.1016\/j.is.2023.102178_b150","article-title":"Research on power behavior analysis based on clustering","volume":"300","author":"Li","year":"2019","journal-title":"IOP Conf.: Earth Environ. Sci."},{"year":"2005","series-title":"Methods of determining the number of clusters in a data set and a new clustering criterion","author":"Yan","key":"10.1016\/j.is.2023.102178_b151"},{"key":"10.1016\/j.is.2023.102178_b152","doi-asserted-by":"crossref","first-page":"1838","DOI":"10.1109\/TKDE.2019.2911582","article-title":"Variable weighting in fuzzy k-means clustering to determine the number of clusters","volume":"32","author":"Khan","year":"2020","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.is.2023.102178_b153","doi-asserted-by":"crossref","unstructured":"S. Ubukata, K. Yanagisawa, A. Notsu, K. Honda, Automatic estimation of cluster number in fuzzy co-clustering based on competition and elimination of clusters, in: 19th International Symposium on Advanced Intelligent Systems (ISIS), 2018.","DOI":"10.1109\/SCIS-ISIS.2018.00111"},{"issue":"1","key":"10.1016\/j.is.2023.102178_b154","doi-asserted-by":"crossref","first-page":"3259","DOI":"10.1038\/s41598-018-21352-7","article-title":"Multiresolution consensus clustering in networks","volume":"8","author":"Jeub","year":"2018","journal-title":"Sci. Rep."},{"issue":"12","key":"10.1016\/j.is.2023.102178_b155","doi-asserted-by":"crossref","first-page":"3007","DOI":"10.1109\/TNNLS.2016.2608001","article-title":"Method for determining the optimal number of clusters based on agglomerative hierarchical clustering","volume":"28","author":"Zhou","year":"2017","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"year":"2019","series-title":"Asymptotic Theory for GMM Inference with Fixed Number of Clusters, Dept of Economics","author":"Hwang","key":"10.1016\/j.is.2023.102178_b156"},{"key":"10.1016\/j.is.2023.102178_b157","doi-asserted-by":"crossref","unstructured":"Randall, et al. A new fixed-overlap partitioning algorithm for determining stability of bioinformatics, in: 2012 11th International Conference on Machine Learning and Applications (ICMLA), 2, 2012, pp. 170-177.","DOI":"10.1109\/ICMLA.2012.149"},{"key":"10.1016\/j.is.2023.102178_b158","series-title":"World Congress on Computing and Communication Technologies","article-title":"An efficient inclusive similarity based clustering (ISC) algorithm for big data","author":"Sangeetha","year":"2017"},{"issue":"1","key":"10.1016\/j.is.2023.102178_b159","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1177\/1748301817735665","article-title":"A MapReduce-based improvement algorithm for DBSCAN","volume":"12","author":"Hu","year":"2018","journal-title":"J. Algorithms Comput. Technol."},{"key":"10.1016\/j.is.2023.102178_b160","doi-asserted-by":"crossref","unstructured":"S. Guha, R. Rastogi, K. Shim, Cure: an efficient clustering algorithm for large databases, in: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD \u201998), 73\u201384, Seattle, DC, USA, June 1998.","DOI":"10.1145\/276305.276312"},{"key":"10.1016\/j.is.2023.102178_b161","doi-asserted-by":"crossref","unstructured":"S. Yuqing, et al. Structure design for RBF neural network based on improved K-means algorithm, in: Chinese Control and Decision Conference (CCDC), 2016.","DOI":"10.1109\/CCDC.2016.7532265"},{"key":"10.1016\/j.is.2023.102178_b162","doi-asserted-by":"crossref","unstructured":"Hui Xu, Shunyu Yao, Qianyun Li, Zhiwei Ye, An improved K-means clustering algorithm, in: International Conferences on Intelligent Data Acquisition and Advanced Computing Systems, September, Dortmund, Germany, 2020.","DOI":"10.1109\/IDAACS-SWS50031.2020.9297060"},{"year":"2020","series-title":"Riccardo Storchi: Application of Agglomerative Hierarchical Clustering for Clustering of Time Series Data","author":"Radovanovic","key":"10.1016\/j.is.2023.102178_b163"},{"key":"10.1016\/j.is.2023.102178_b164","doi-asserted-by":"crossref","first-page":"3007","DOI":"10.1109\/TNNLS.2016.2608001","article-title":"Method for determining the optimal number of clusters based on agglomerative hierarchical clustering","volume":"28","author":"Zhou","year":"2017","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.is.2023.102178_b165","doi-asserted-by":"crossref","unstructured":"S. Miyamoto, Y. Kaizu, Y. Endo, Hierarchical and non-hierarchical medoid clustering using asymmetric similarity measures, in: 17th International Symposium on Advanced Intelligent Systems (ISIS), Sapporo, Japan, Aug. 25\u201328, 2016, pp. 400\u2013403.","DOI":"10.1109\/SCIS-ISIS.2016.0091"},{"issue":"12","key":"10.1016\/j.is.2023.102178_b166","doi-asserted-by":"crossref","DOI":"10.1109\/TNNLS.2016.2608001","article-title":"Method for determining the optimal number of clusters based on agglomerative hierarchical clustering","volume":"28","author":"Zhou","year":"2017","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.is.2023.102178_b167","doi-asserted-by":"crossref","unstructured":"Chong Han, Bing Sun, Jingwen Li, A new track initiation algorithm based on hierarchical clustering and correlation coefficient, in: IEEE 5th International Conference on Signal and Image Processing (ICSIP), 2020.","DOI":"10.1109\/ICSIP49896.2020.9339351"},{"key":"10.1016\/j.is.2023.102178_b168","doi-asserted-by":"crossref","first-page":"142337","DOI":"10.1109\/ACCESS.2020.3013241","article-title":"Divisive algorithm based on node clustering coefficient for community detection","volume":"8","author":"Ji","year":"2020","journal-title":"IEEE Access"},{"issue":"10","key":"10.1016\/j.is.2023.102178_b169","doi-asserted-by":"crossref","first-page":"3364","DOI":"10.1016\/j.patcog.2010.04.021","article-title":"SEP\/COP: an efficient method to find the best partition in hierarchical clustering based on a new cluster validity index","volume":"43","author":"Gurrutxaga","year":"2010","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.is.2023.102178_b170","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1186\/1471-2105-13-174","article-title":"A novel hierarchical clustering algorithm for gene sequences","volume":"13","author":"Wei","year":"2012","journal-title":"BMC Bioinform."},{"key":"10.1016\/j.is.2023.102178_b171","doi-asserted-by":"crossref","unstructured":"H. Zhenfeng, Z. Yu, Cluster number estimation by adaptively identifying ambiguously clustered pairs, in: The 35th Chinese Control Conference, July 27-29, Chengdu, China, 2016.","DOI":"10.1109\/ChiCC.2016.7554487"},{"key":"10.1016\/j.is.2023.102178_b172","doi-asserted-by":"crossref","unstructured":"X. Wang, Y. Jiao, S. Fei, Estimation of clusters number and initial centers of K-means algorithm using watershed method, in: 14 IEEE International Symposium on Distributed Computing and Applications for Business Engineering & Science, 2015.","DOI":"10.1109\/DCABES.2015.132"},{"issue":"1","key":"10.1016\/j.is.2023.102178_b173","article-title":"Enhanced ensemble clustering via fast propagation of cluster-wise similarities","volume":"51","author":"Huang","year":"2021","journal-title":"IEEE Trans. Syst. Man Cybern."},{"issue":"4","key":"10.1016\/j.is.2023.102178_b174","doi-asserted-by":"crossref","first-page":"887","DOI":"10.1109\/TCBB.2014.2359433","article-title":"Adaptive fuzzy consensus clustering framework for clustering analysis of cancer data","volume":"12","author":"Yu","year":"2015","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinform."},{"key":"10.1016\/j.is.2023.102178_b175","doi-asserted-by":"crossref","unstructured":"S. Chatterjee, N. Pasquier, A. Mukhopadhyay, Multi-objective clustering ensemble for varying number of clusters, in: 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Las Palmas de Gran Canaria, Spain, 2018.","DOI":"10.1109\/SITIS.2018.00067"},{"key":"10.1016\/j.is.2023.102178_b176","doi-asserted-by":"crossref","unstructured":"J. Huang, S. Gong, X. Zhu, Deep semantic clustering by partition confidence maximisation, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020, pp. 8846-8855.","DOI":"10.1109\/CVPR42600.2020.00887"},{"key":"10.1016\/j.is.2023.102178_b177","doi-asserted-by":"crossref","unstructured":"W. Wiharto, E. Suryani, The analysis effect of cluster numbers on fuzzy C-means algorithm for blood vessel segmentation of retinal fundus image, in: IEEE 2nd International Conference on Information and Communications Technology, 2019, pp. 1\u20134.","DOI":"10.1109\/ICOIACT46704.2019.8938583"},{"key":"10.1016\/j.is.2023.102178_b178","doi-asserted-by":"crossref","unstructured":"N. Bharill, A. Tiwari, Enhanced cluster validity index for the evaluation of optimal number of clusters for Fuzzy c-Means algorithm, in: IEEE international conference proceedings of the 2014 on fuzzy systems (FUZZ-IEEE), 2014, pp. 1526\u20131533.","DOI":"10.1109\/FUZZ-IEEE.2014.6891591"},{"key":"10.1016\/j.is.2023.102178_b179","doi-asserted-by":"crossref","unstructured":"Y. Ogino, M. Yukawa, Spectral clustering with automatic cluster-number identification via finding sparse eigenvectors, in: 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, September 2018.","DOI":"10.23919\/EUSIPCO.2018.8553168"},{"key":"10.1016\/j.is.2023.102178_b180","doi-asserted-by":"crossref","unstructured":"H. He, Y. Tan, K. Fujimoto, Estimation of optimal cluster number for fuzzy clustering with combined fuzzy entropy index, in: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2016, pp. 697-703.","DOI":"10.1109\/FUZZ-IEEE.2016.7737755"},{"key":"10.1016\/j.is.2023.102178_b181","doi-asserted-by":"crossref","unstructured":"A. Little, A. Byrd, A multiscale spectral method for learning number of clusters, in: 14th IEEE ICMLA, Miami, USA, 2015.","DOI":"10.1109\/ICMLA.2015.119"},{"issue":"6","key":"10.1016\/j.is.2023.102178_b182","doi-asserted-by":"crossref","first-page":"3672","DOI":"10.1109\/TGRS.2016.2524557","article-title":"Spectral-spatial sparse subspace clustering for hyperspectral remote sensing images","volume":"54","author":"Zhang","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"8","key":"10.1016\/j.is.2023.102178_b183","doi-asserted-by":"crossref","first-page":"3973","DOI":"10.1109\/TIP.2019.2903294","article-title":"Simultaneous subspace clustering and cluster number estimating based on triplet relationship","volume":"28","author":"Liang","year":"2019","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.is.2023.102178_b184","doi-asserted-by":"crossref","unstructured":"M. Karoui, et al. Un-supervised hyperspectral band selection by sequentially clustering a mahalanobis-based dissimilarity of variable endmembers, in: Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunisia, 2020.","DOI":"10.1109\/M2GARSS47143.2020.9105250"},{"issue":"2","key":"10.1016\/j.is.2023.102178_b185","doi-asserted-by":"crossref","first-page":"765","DOI":"10.1109\/TCYB.2019.2932451","article-title":"An elite gene guided reproduction operator for many-objective optimization","author":"Zhu","year":"2021","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.is.2023.102178_b186","doi-asserted-by":"crossref","unstructured":"A. Aslam, U. Qamar, R.A. Khan, P. Saqib, Improving K-mean method by finding initial centroid points, in: 2020 22nd International Conference on Advanced Communication Technology (ICACT), Phoenix Park, Korea, 16\u201319 February 2020, pp. 624\u2013627.","DOI":"10.23919\/ICACT48636.2020.9061522"},{"key":"10.1016\/j.is.2023.102178_b187","article-title":"Improved maximum margin clustering via the bundle method","author":"Jianqiang","year":"2019","journal-title":"Comput. Sci. Math., IEEE Access"},{"issue":"8","key":"10.1016\/j.is.2023.102178_b188","doi-asserted-by":"crossref","DOI":"10.1177\/1550147717728627","article-title":"An effective and efficient hierarchical K-means clustering algorithm","volume":"13","author":"Qi","year":"2017","journal-title":"Int. J. Distrib. Sens. Netw."},{"key":"10.1016\/j.is.2023.102178_b189","unstructured":"Jianpeng Qi, Yanwei Yu, Lihong Wang, Jinglei Liu, K-means: An effective and efficient K-means clustering algorithm, in: 2016 IEEE International Conferences on Big Data and Cloud Computing (Bdcloud), Social Computing and Networking (Socialcom), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-SustainCom), 2016, pp. 242\u2013249."},{"key":"10.1016\/j.is.2023.102178_b190","doi-asserted-by":"crossref","DOI":"10.14778\/2180912.2180915","article-title":"Scalable k-means+","author":"Bahmani","year":"2012","journal-title":"Proc. VLDB Endow."},{"issue":"7","key":"10.1016\/j.is.2023.102178_b191","doi-asserted-by":"crossref","first-page":"2505","DOI":"10.1016\/j.patcog.2014.01.015","article-title":"The MinMax k-means clustering algorithm","volume":"47","author":"Tzortzis","year":"2014","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.is.2023.102178_b192","doi-asserted-by":"crossref","unstructured":"Dey Sayak, Swagatam Das, Rammohan Mallipeddi, The sparse minmax k-means algorithm for high-dimensional clustering, in: The 29th International Joint Conference on Artificial Intelligence, 2020, pp. 2103\u20132110.","DOI":"10.24963\/ijcai.2020\/291"},{"key":"10.1016\/j.is.2023.102178_b193","doi-asserted-by":"crossref","unstructured":". Liu, et al. Improved K-means clustering algorithm for screw locking classification, in: 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China, China, 2019.","DOI":"10.1109\/IAEAC47372.2019.8998054"},{"key":"10.1016\/j.is.2023.102178_b194","first-page":"49","article-title":"Fuzzy c-means clustering algorithm based on kernel method","author":"Wu","year":"2003","journal-title":"The Fifth ICCIMA"},{"key":"10.1016\/j.is.2023.102178_b195","unstructured":"Zhu, et al. An improved K-means clustering algorithm, in: 2011 IEEE 3rd International Conference on Communication Software and Networks, Xian, China, 2011."},{"key":"10.1016\/j.is.2023.102178_b196","doi-asserted-by":"crossref","unstructured":"S. Bhatia, New improved technique for initial cluster centers of K means clustering using Genetic Algorithm, in: IEEE International Conference for Convergence for Technology, Pune, India, 2014.","DOI":"10.1109\/I2CT.2014.7092112"},{"key":"10.1016\/j.is.2023.102178_b197","article-title":"K-means clustering with incomplete data","author":"Wang","year":"2019","journal-title":"IEEE Access"},{"issue":"2","key":"10.1016\/j.is.2023.102178_b198","doi-asserted-by":"crossref","first-page":"79","DOI":"10.3233\/KES-2010-0233","article-title":"Modified moving k-means clustering algorithm","volume":"16","author":"Alias","year":"2012","journal-title":"Knowl.-Based Intell. Eng. Syst."},{"year":"2014","series-title":"R: A Language and Environment for Statistical Computing","key":"10.1016\/j.is.2023.102178_b199"},{"key":"10.1016\/j.is.2023.102178_b200","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0162259","article-title":"What to do when K-means clustering fails: a simple yet principled alternative algorithm","author":"Raykov","year":"2016","journal-title":"PLoS ONE"},{"issue":"1","key":"10.1016\/j.is.2023.102178_b201","first-page":"3049","article-title":"The impact of random models on clustering similarity","volume":"18","author":"Gates","year":"2017","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.is.2023.102178_b202","first-page":"3097","article-title":"Fast and robust RBF neural network based on global K-means clustering with adaptive selection radius for sound source angle estimation","author":"Yang","year":"2018","journal-title":"IEEE Trans. Antennas and Propagation"},{"issue":"4","key":"10.1016\/j.is.2023.102178_b203","doi-asserted-by":"crossref","DOI":"10.1109\/TCBB.2018.2886006","article-title":"Intra-cluster distance minimization in DNA methylation analysis using an advanced Tabu-based iterative k-medoids clustering algorithm (T-CLUST)","volume":"17","author":"Damgacioglu","year":"2020","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinform."},{"year":"2018","series-title":"NoCS2: Topic-Based Clustering of Big Data Text Corpus in the Cloud, 21 ICCIT, Dhaka, Bangladesh","author":"Zobaed","key":"10.1016\/j.is.2023.102178_b204"},{"key":"10.1016\/j.is.2023.102178_b205","doi-asserted-by":"crossref","unstructured":"C. Liu, et al. Improved K-means algorithm based on hybrid rice optimization algorithm, in: 9th IEEE International Conference on Intelligent Data Acquisition & Advanced Computing Systems, Romania, 2017.","DOI":"10.1109\/IDAACS.2017.8095196"},{"key":"10.1016\/j.is.2023.102178_b206","doi-asserted-by":"crossref","unstructured":"R. Abe, S. Miyamoto, Y. Endo, Y. Hamasuna, Hierarchical clustering algorithms with automatic estimation of the number of clusters, in: 17th World Congress of International Fuzzy Systems Association, Otsu, Japan, 2017.","DOI":"10.1109\/IFSA-SCIS.2017.8023241"},{"issue":"10","key":"10.1016\/j.is.2023.102178_b207","doi-asserted-by":"crossref","first-page":"1626","DOI":"10.1631\/jzus.2006.A1626","article-title":"An efficient enhanced k-means clustering algorithm","volume":"7","author":"Fahim","year":"2006","journal-title":"J. Zhejiang University, Springer"},{"key":"10.1016\/j.is.2023.102178_b208","doi-asserted-by":"crossref","unstructured":"S. Mahmud, et al. Improvement of K-means Clustering algorithm with better initial centroids based on weighted average, in: 7 International Conference in Electrical and Computer Engineering, Dhaka, Bangladesh, 2012.","DOI":"10.1109\/ICECE.2012.6471633"},{"key":"10.1016\/j.is.2023.102178_b209","doi-asserted-by":"crossref","first-page":"965","DOI":"10.1016\/j.patrec.2007.01.001","article-title":"A method for initializing the Kmeans clustering algorithm using kd-trees","volume":"28","author":"Redmond","year":"2007","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.is.2023.102178_b210","article-title":"An enhanced k-means clustering algorithm for pattern discovery in healthcare data","volume":"11","author":"Haraty","year":"2015","journal-title":"J. Dis. Sen. Net."},{"key":"10.1016\/j.is.2023.102178_b211","doi-asserted-by":"crossref","first-page":"16649","DOI":"10.1109\/ACCESS.2017.2739822","article-title":"Initial shape pool construction for facial landmark localization under occlusion","volume":"5","author":"Wu","year":"2017","journal-title":"IEEE Access"},{"key":"10.1016\/j.is.2023.102178_b212","doi-asserted-by":"crossref","unstructured":"Wang, et al. An improved K-means algorithm for document clustering based on knowledge graphs, in: 11 International Conference Image and Signal Processing, 2018.","DOI":"10.1109\/CISP-BMEI.2018.8633187"},{"key":"10.1016\/j.is.2023.102178_b213","first-page":"55","article-title":"Variable selection and outlier detection for automated K-means clustering","volume":"22","author":"Kim","year":"2015","journal-title":"Commun. Stat. Appl. Methods"},{"key":"10.1016\/j.is.2023.102178_b214","doi-asserted-by":"crossref","unstructured":"P. Arjun, T. Mirnalinee, M. Tamilarasan, Compact centroid distance shape descriptor based on object area normalization, in: IEEE International Conf. on Advanced Communication Control and Computing Technologies (ICACCCT), Ramanathapuram, India, 2014.","DOI":"10.1109\/ICACCCT.2014.7019388"},{"issue":"463","key":"10.1016\/j.is.2023.102178_b215","doi-asserted-by":"crossref","first-page":"750","DOI":"10.1198\/016214503000000666","article-title":"Finding the number of clusters in a data set: An information theoretic approach","volume":"98","author":"Sugar","year":"2003","journal-title":"J. Amer. Statist. Assoc."},{"key":"10.1016\/j.is.2023.102178_b216","doi-asserted-by":"crossref","first-page":"20764","DOI":"10.1109\/ACCESS.2018.2805365","article-title":"DOE-AND-SCA: a novel SCA based on DNN with optimal eigenvectors and automatic cluster number determination","volume":"6","author":"Chen","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.is.2023.102178_b217","first-page":"1","article-title":"Incremental adaptive semi-supervised fuzzy clustering for data stream classification","author":"Casalino","year":"2018","journal-title":"EAIS"},{"issue":"11","key":"10.1016\/j.is.2023.102178_b218","article-title":"A new efficient approach towards k-means clustering algorithm","volume":"65","author":"Purohit","year":"2013","journal-title":"Int. J. Comput. Appl."},{"key":"10.1016\/j.is.2023.102178_b219","doi-asserted-by":"crossref","first-page":"64351","DOI":"10.1109\/ACCESS.2019.2917532","article-title":"Semi-supervised K-means ddos detection method using hybrid feature selection algorithm","volume":"7","author":"Gu","year":"2019","journal-title":"IEEE Access"},{"issue":"2","key":"10.1016\/j.is.2023.102178_b220","first-page":"121","article-title":"Enhancing k-means clustering algorithm with improved initial center","volume":"1","author":"Yedla","year":"2010","journal-title":"IJCSIT"},{"key":"10.1016\/j.is.2023.102178_b221","doi-asserted-by":"crossref","unstructured":"H. Doan, D. Nguyen, An adaptive method to determine the number of clusters in clustering process, in: 2014 International Conference on Computer and Information Sciences (ICCOINS), Kuala Lumpur, Malaysia, June 2014.","DOI":"10.1109\/ICCOINS.2014.6868373"},{"issue":"17","key":"10.1016\/j.is.2023.102178_b222","doi-asserted-by":"crossref","first-page":"4920","DOI":"10.3390\/s20174920","article-title":"An adaptive ellipse distance density peak fuzzy clustering algorithm based on the multi-target traffic radar","volume":"20","author":"Cao","year":"2020","journal-title":"Sensors"},{"issue":"6","key":"10.1016\/j.is.2023.102178_b223","doi-asserted-by":"crossref","DOI":"10.1109\/TKDE.2019.2954317","article-title":"Clustering with outlier removal","volume":"33","author":"Liu","year":"2021","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"6191","key":"10.1016\/j.is.2023.102178_b224","doi-asserted-by":"crossref","first-page":"1492","DOI":"10.1126\/science.1242072","article-title":"Clustering by fast search and find of density peaks","volume":"344","author":"Rodriguez","year":"2014","journal-title":"Science"},{"key":"10.1016\/j.is.2023.102178_b225","doi-asserted-by":"crossref","unstructured":"C. Zhang, J. Wang, X. Li, F. Fu, W. Wang, Clustering centroid selection using a K-means and rapid density peak search fusion algorithm, in: 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS), 2020.","DOI":"10.1109\/ICSESS49938.2020.9237746"},{"key":"10.1016\/j.is.2023.102178_b226","series-title":"7th IEEE CCBD, China","article-title":"An improved K-means text clustering algorithm by optimizing initial cluster centers","author":"Xiong","year":"2016"},{"key":"10.1016\/j.is.2023.102178_b227","unstructured":"O. Limwatt, S. Arch-int, Detecting cluster members based on density changes using density-index enhanced scale-invariant density-based clustering initialization algorithm, in: 9th Conf. on Information Technology & Electrical Engineering, Phuket, Thailand, 2017."},{"key":"10.1016\/j.is.2023.102178_b228","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1186\/1471-2288-11-102","article-title":"Sample size calculations for cluster randomized controlled trials with a fixed number of clusters","volume":"11","author":"Hemming","year":"2011","journal-title":"BMC Med. Res. Methodol."},{"key":"10.1016\/j.is.2023.102178_b229","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0119074","article-title":"The effect of cluster size variability on statistical power in cluster-randomized trials","author":"Lauer","year":"2015","journal-title":"PLoS One"},{"issue":"5","key":"10.1016\/j.is.2023.102178_b230","doi-asserted-by":"crossref","first-page":"1192","DOI":"10.1109\/TSMCB.2009.2013723","article-title":"Achieving microaggregation for secure statistical databases using fixed-structure partitioning-based learning automata","volume":"39","author":"Fayyoumi","year":"2009","journal-title":"IEEE Trans. Syst. Man Cybern. B"},{"key":"10.1016\/j.is.2023.102178_b231","doi-asserted-by":"crossref","first-page":"j3064","DOI":"10.1136\/bmj.j3064","article-title":"How to design efficient cluster randomised trials","volume":"358","author":"Hemming","year":"2017","journal-title":"BMJ"},{"key":"10.1016\/j.is.2023.102178_b232","doi-asserted-by":"crossref","first-page":"3192","DOI":"10.1016\/j.patcog.2008.04.004","article-title":"Modified global k-means algorithm for minimum sumof-squares clustering problems","volume":"41","author":"Bagirov","year":"2008","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.is.2023.102178_b233","doi-asserted-by":"crossref","unstructured":"Wald, et al. A new fixed-overlap partitioning algorithm for determining stability of bioinformatics gene rankers, in: 2012 11th International Conference on Machine Learning and Applications (ICMLA), (2) 2012.","DOI":"10.1109\/ICMLA.2012.149"},{"issue":"10","key":"10.1016\/j.is.2023.102178_b234","doi-asserted-by":"crossref","DOI":"10.1109\/TIT.2016.2594812","article-title":"Achieving exact cluster recovery threshold via semidefinite programming: Extensions","volume":"62","author":"Hajek","year":"2015","journal-title":"IEEE Trans. Inform. Theory"},{"key":"10.1016\/j.is.2023.102178_b235","article-title":"Kernel recursive least squares algorithm based on the Nystr\u00f6m method with k-means sampling","volume":"27","author":"Zhang","year":"2020","journal-title":"IEEE Signal Process. Lett."},{"issue":"6\/7","key":"10.1016\/j.is.2023.102178_b236","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1016\/S0167-8655(01)00021-6","article-title":"Stochastic kmeans algorithm for vector quantization","volume":"22","author":"Kvesi","year":"2001","journal-title":"Pattern Recognit. Lett."},{"issue":"2","key":"10.1016\/j.is.2023.102178_b237","doi-asserted-by":"crossref","DOI":"10.1109\/MSMC.2020.2965319","article-title":"Sequential cluster estimation: A generalized model for finding large numbers of clusters in data","volume":"6","author":"Runkler","year":"2020","journal-title":"IEEE Syst. Man Cybern. Mag."},{"key":"10.1016\/j.is.2023.102178_b238","unstructured":"L. Bottou, Large-scale machine learning with stochastic gradient descent, in: 19th International Conference on Computational Statistics, Paris France, August 22-27, 2010."},{"key":"10.1016\/j.is.2023.102178_b239","doi-asserted-by":"crossref","unstructured":"Raju, et al. Fuzzy clustering methods in data mining: A comparative case analysis, in: 2008 International Conference on Advanced Computer Theory and Engineering (ICACTE), Phuket, Thailand, 2008.","DOI":"10.1109\/ICACTE.2008.199"},{"key":"10.1016\/j.is.2023.102178_b240","article-title":"The global kernel k-means clustering algorithm for cerebral infarction classification","author":"Rustam","year":"2019","journal-title":"J. Phys."},{"key":"10.1016\/j.is.2023.102178_b241","unstructured":"P. Bradley, et al. Refining initial points for k-means clustering, in: 15th Inter. Conference on Machine Learning, San Francisco, USA, 1998."},{"key":"10.1016\/j.is.2023.102178_b242","doi-asserted-by":"crossref","first-page":"2936","DOI":"10.1109\/TNNLS.2016.2608354","article-title":"Cluster validation method for determining the number of clusters in categorical sequences","volume":"28","author":"Guo","year":"2017","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"1","key":"10.1016\/j.is.2023.102178_b243","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1109\/TFUZZ.2017.2659739","article-title":"On the convergence of the sparse possibilistic C-means algorithm","volume":"26","author":"Koutroumbas","year":"2018","journal-title":"IEEE Trans. Fuzzy Syst."},{"year":"2022","series-title":"The UC Irvine Machine Learning Repository [Online]","key":"10.1016\/j.is.2023.102178_b244"},{"issue":"5","key":"10.1016\/j.is.2023.102178_b245","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1109\/91.873575","article-title":"GA-fuzzy modeling and classification: complexity and performance","volume":"8","author":"Setnes","year":"2000","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"1","key":"10.1016\/j.is.2023.102178_b246","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1109\/TBDATA.2017.2711039","article-title":"Time series anomaly detection for trustworthy services in cloud computing systems","volume":"8","author":"Huang","year":"2022","journal-title":"IEEE Trans. Big Data"},{"key":"10.1016\/j.is.2023.102178_b247","doi-asserted-by":"crossref","first-page":"74683","DOI":"10.1109\/ACCESS.2019.2921320","article-title":"A novel algorithm for initial cluster center selection","volume":"7","author":"Li","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.is.2023.102178_b248","doi-asserted-by":"crossref","first-page":"80716","DOI":"10.1109\/ACCESS.2020.2988796","article-title":"Unsupervised K-means clustering algorithm","volume":"8","author":"Sinaga","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.is.2023.102178_b249","unstructured":"Iris Data Set: https:\/\/archive.ics.uci.edu\/ml\/datasets\/iris."},{"issue":"4","key":"10.1016\/j.is.2023.102178_b250","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/JSTQE.2022.3169833","article-title":"Reconfigurable activation functions in integrated optical neural networks","volume":"28","author":"Rausell\u00a0Campo","year":"2022","journal-title":"IEEE J. Sel. Top. Quantum Electron."},{"key":"10.1016\/j.is.2023.102178_b251","unstructured":"M. Abadi, et al. TensorFlow: A system for large-scale machine learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI \u201916), 2016, pp. 265\u2013284."},{"key":"10.1016\/j.is.2023.102178_b252","series-title":"New Challenges for Intelligent Information, SCI 351","first-page":"157","article-title":"A modified fuzzy possibilistic C-means for context data clustering toward efficient context prediction","author":"Saad","year":"2011"},{"year":"2014","series-title":"Adam: A method for stochastic optimization","author":"Kingma","key":"10.1016\/j.is.2023.102178_b253"},{"key":"10.1016\/j.is.2023.102178_b254","doi-asserted-by":"crossref","first-page":"80716","DOI":"10.1109\/ACCESS.2020.2988796","article-title":"Un-supervised K-means clustering algorithm","volume":"8","author":"Sinaga","year":"2020","journal-title":"IEEE Access"}],"container-title":["Information Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0306437923000145?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0306437923000145?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,12]],"date-time":"2024-10-12T13:07:50Z","timestamp":1728738470000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0306437923000145"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3]]},"references-count":254,"alternative-id":["S0306437923000145"],"URL":"https:\/\/doi.org\/10.1016\/j.is.2023.102178","relation":{},"ISSN":["0306-4379"],"issn-type":[{"type":"print","value":"0306-4379"}],"subject":[],"published":{"date-parts":[[2023,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Semi-supervised and un-supervised clustering: A review and experimental evaluation","name":"articletitle","label":"Article Title"},{"value":"Information Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.is.2023.102178","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102178"}}