{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,8]],"date-time":"2024-07-08T21:24:39Z","timestamp":1720473879109},"reference-count":29,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Systems"],"published-print":{"date-parts":[[2023,3]]},"DOI":"10.1016\/j.is.2022.102154","type":"journal-article","created":{"date-parts":[[2022,12,5]],"date-time":"2022-12-05T17:09:03Z","timestamp":1670260143000},"page":"102154","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["A detection method for hybrid attacks in recommender systems"],"prefix":"10.1016","volume":"114","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7890-9001","authenticated-orcid":false,"given":"Yaojun","family":"Hao","sequence":"first","affiliation":[]},{"given":"Guoyan","family":"Meng","sequence":"additional","affiliation":[]},{"given":"Jian","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Chunmei","family":"Zong","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.is.2022.102154_b1","unstructured":"Y. Zhang, Y. Tan, Z. Min, Y. Liu, C. Tat-Seng, S. Ma, Catch the black sheep: unified framework for shilling attack detection based on fraudulent action propagation, in: International Conference on Artificial Intelligence, 2015."},{"issue":"10","key":"10.1016\/j.is.2022.102154_b2","doi-asserted-by":"crossref","first-page":"2600","DOI":"10.1587\/transinf.2015EDP7500","article-title":"Shilling attack detection in recommender systems via selecting patterns analysis","volume":"E99.D","author":"Li","year":"2016","journal-title":"IEICE Trans. Inf. Syst."},{"key":"10.1016\/j.is.2022.102154_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2015.12.137","article-title":"SVM-tia a shilling attack detection method based on SVM and target item analysis in recommender systems","volume":"210","author":"Zhou","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.is.2022.102154_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2016.02.008","article-title":"Re-scale AdaBoost for attack detection in collaborative filtering recommender systems","volume":"100","author":"Yang","year":"2016","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.is.2022.102154_b5","unstructured":"Zhiang Wu, Junjie Wu, Jie Cao, Dacheng Tao, HySAD: A Semi-Supervised Hybrid Shilling Attack Detector for Trustworthy Product Recommendation, in: Proceedings of the 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, 2012."},{"key":"10.1016\/j.is.2022.102154_b6","doi-asserted-by":"crossref","DOI":"10.1093\/comjnl\/bxy008","article-title":"A shilling attack detector based on convolutional neural network for collaborative recommender system in social aware network","volume":"61","author":"Tong","year":"2018","journal-title":"Comput. J."},{"key":"10.1016\/j.is.2022.102154_b7","series-title":"Special Interest Tracks and Posters of the 14th International Conference on World Wide Web","first-page":"960","article-title":"Finding group shilling in recommendation system","author":"Su","year":"2005"},{"key":"10.1016\/j.is.2022.102154_b8","series-title":"Advanced Data Mining and Applications","article-title":"Towards a tricksy group shilling attack model against recommender systems","author":"Wang","year":"2012"},{"key":"10.1016\/j.is.2022.102154_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.105984","article-title":"Graph embedding-based approach for detecting group shilling attacks in collaborative recommender systems","volume":"199","author":"Zhang","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.is.2022.102154_b10","doi-asserted-by":"crossref","DOI":"10.1109\/TCSS.2020.3013878","article-title":"Detecting group shilling attacks in online recommender systems based on bisecting K-means clustering","volume":"7","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Comput. Soc. Syst."},{"key":"10.1016\/j.is.2022.102154_b11","doi-asserted-by":"crossref","DOI":"10.1108\/OIR-03-2015-0073","article-title":"Discovering shilling groups in a real e-commerce platform","volume":"40","author":"Wang","year":"2016","journal-title":"Online Inf. Rev."},{"key":"10.1016\/j.is.2022.102154_b12","unstructured":"Carlos\u00a0E. Seminario, David\u00a0C. Wilson, Assessing Impacts of a Power User Attack on a Matrix Factorization Collaborative Recommender System, in: Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference: FLAIRS-27, Pensacola Beach, Florida, USA, 21-23 May 2014, 2014."},{"key":"10.1016\/j.is.2022.102154_b13","unstructured":"Carlos\u00a0E. Seminario, David\u00a0C. Wilson, Nuking Item-Based Collaborative Recommenders with Power Items and Multiple Targets, in: Proceedings of the Twenty-Ninth International Florida Artificial Intelligence Research Society Conference: FLAIRS-29, Key Largo, Florida, USA, 16-18 May 2016, 2016."},{"key":"10.1016\/j.is.2022.102154_b14","doi-asserted-by":"crossref","DOI":"10.1007\/s11761-007-0013-0","article-title":"Defending recommender systems: detection of profile injection attacks","volume":"1","author":"Williams","year":"2007","journal-title":"Serv. Orient. Comput. Appl."},{"key":"10.1016\/j.is.2022.102154_b15","doi-asserted-by":"crossref","DOI":"10.1007\/s12652-019-01321-2","article-title":"Shilling attack detection in binary data: a classification approach","volume":"11","author":"Batmaz","year":"2020","journal-title":"J. Ambient Intell. Humaniz. Comput."},{"key":"10.1016\/j.is.2022.102154_b16","article-title":"Fusing hypergraph spectral features for shilling attack detection","volume":"63","author":"Hao","year":"2021","journal-title":"J. Inf. Secur. Appl."},{"key":"10.1016\/j.is.2022.102154_b17","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2016.08.011","article-title":"Estimating user behavior toward detecting anomalous ratings in rating systems","volume":"111","author":"Yang","year":"2016","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.is.2022.102154_b18","doi-asserted-by":"crossref","DOI":"10.1007\/s00500-020-05162-6","article-title":"An unsupervised detection method for shilling attacks based on deep learning and community detection","volume":"25","author":"Hao","year":"2021","journal-title":"Soft Comput.: Fusion Found., Methodol. Appl."},{"key":"10.1016\/j.is.2022.102154_b19","doi-asserted-by":"crossref","DOI":"10.23919\/JCC.2019.10.008","article-title":"A novel shilling attack detection model based on particle filter and gravitation","volume":"16","author":"Qi","year":"2019","journal-title":"China Commun."},{"key":"10.1016\/j.is.2022.102154_b20","unstructured":"Thomas\u00a0N. Kipf, Max Welling, Semi-Supervised Classification with Graph Convolutional Networks, in: International Conference on Learning Representations, ICLR, 2017."},{"key":"10.1016\/j.is.2022.102154_b21","article-title":"Detecting review spammer groups via bipartite graph projection","volume":"59","author":"Zhuo","year":"2016","journal-title":"Comput. J."},{"key":"10.1016\/j.is.2022.102154_b22","doi-asserted-by":"crossref","unstructured":"Kaize Ding, Jundong Li, Rohit Bhanushali, Huan Liu, Deep Anomaly Detection on Attributed Networks, in: SIAM International Conference on Data Mining: SDM19, Calgary, Canada, 2-4 May 2019, 2019.","DOI":"10.1137\/1.9781611975673.67"},{"key":"10.1016\/j.is.2022.102154_b23","series-title":"NeurIPS","article-title":"R-drop: Regularized dropout for neural networks","author":"Liang","year":"2021"},{"key":"10.1016\/j.is.2022.102154_b24","doi-asserted-by":"crossref","unstructured":"G. Guo, J. Zhang, D. Thalmann, N. Yorke-Smith, ETAF: An Extended Trust Antecedents Framework for Trust Prediction, in: Proceedings of the 2014 International Conference on Advances in Social Networks Analysis and Mining, ASONAM, 2014.","DOI":"10.1109\/ASONAM.2014.6921639"},{"key":"10.1016\/j.is.2022.102154_b25","series-title":"Proceedings of the Sixth Workshop on Ph.D. Students in Information and Knowledge Management, PIKM@CIKM 2013, San Francisco, CA, USA, November 1, 2013","first-page":"33","article-title":"Detecting collusive spammers in online review communities","author":"Xu","year":"2013"},{"key":"10.1016\/j.is.2022.102154_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.105520","article-title":"Label propagation-based approach for detecting review spammer groups on e-commerce websites","volume":"193","author":"Zhang","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.is.2022.102154_b27","doi-asserted-by":"crossref","DOI":"10.1007\/s11257-008-9050-4","article-title":"Unsupervised strategies for shilling detection and robust collaborative filtering","volume":"19","author":"Mehta","year":"2009","journal-title":"User Model. User-Adapt. Interact."},{"key":"10.1016\/j.is.2022.102154_b28","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.ijar.2014.08.001","article-title":"Generalizing the wilcoxon rank-sum test for interval data","volume":"56","author":"Perolat","year":"2015","journal-title":"Internat. J. Approx. Reason."},{"key":"10.1016\/j.is.2022.102154_b29","series-title":"International Conference on Learning Representations","article-title":"DropEdge: Towards deep graph convolutional networks on node classification","author":"Rong","year":"2020"}],"container-title":["Information Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0306437922001326?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0306437922001326?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,20]],"date-time":"2023-09-20T15:30:30Z","timestamp":1695223830000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0306437922001326"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3]]},"references-count":29,"alternative-id":["S0306437922001326"],"URL":"https:\/\/doi.org\/10.1016\/j.is.2022.102154","relation":{},"ISSN":["0306-4379"],"issn-type":[{"value":"0306-4379","type":"print"}],"subject":[],"published":{"date-parts":[[2023,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A detection method for hybrid attacks in recommender systems","name":"articletitle","label":"Article Title"},{"value":"Information Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.is.2022.102154","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102154"}}