{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:37:53Z","timestamp":1732037873137},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,2,1]],"date-time":"2019-02-01T00:00:00Z","timestamp":1548979200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"Brazilian National Institute of Science and Technology","award":["573871\/2008-6"]},{"name":"MASWeb","award":["FAPEMIG\/PRONEX APQ-01400-14"]},{"DOI":"10.13039\/501100002322","name":"CAPES","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002322","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003593","name":"CNPq","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004809","name":"Finep","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004901","name":"Fapemig","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004901","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Systems"],"published-print":{"date-parts":[[2019,2]]},"DOI":"10.1016\/j.is.2018.09.001","type":"journal-article","created":{"date-parts":[[2018,9,26]],"date-time":"2018-09-26T07:09:58Z","timestamp":1537945798000},"page":"1-12","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":32,"special_numbering":"C","title":["The Pure Cold-Start Problem: A deep study about how to conquer first-time users in recommendations domains"],"prefix":"10.1016","volume":"80","author":[{"given":"N\u00edcollas","family":"Silva","sequence":"first","affiliation":[]},{"given":"Diego","family":"Carvalho","sequence":"additional","affiliation":[]},{"given":"Adriano C.M.","family":"Pereira","sequence":"additional","affiliation":[]},{"given":"Fernando","family":"Mour\u00e3o","sequence":"additional","affiliation":[]},{"given":"Leonardo","family":"Rocha","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2009","series-title":"The Paradox of Choice: Why More Is Less","author":"Schwartz","key":"10.1016\/j.is.2018.09.001_b1"},{"key":"10.1016\/j.is.2018.09.001_b2","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.knosys.2013.03.012","article-title":"Recommender systems survey","volume":"46","author":"Bobadilla","year":"2013","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.is.2018.09.001_b3","unstructured":"D. Lee, K. Hosanagar, Impact of recommender systems on sales volume and diversity, in: Proceedings of International Conference on Information Systems, 2014, https:\/\/aisel.aisnet.org\/icis2014\/proceedings\/EBusiness\/40\/."},{"issue":"11","key":"10.1016\/j.is.2018.09.001_b4","doi-asserted-by":"crossref","first-page":"4837","DOI":"10.1016\/j.jbusres.2016.04.040","article-title":"An examination of retail website design and conversion rate","volume":"69","author":"McDowell","year":"2016","journal-title":"J. Bus. Res."},{"key":"10.1016\/j.is.2018.09.001_b5","unstructured":"Conversion rate of online shoppers in the United States as of 4th quarter 2017, by device, Statistics, Inc., 2017, URL https:\/\/www.statista.com\/statistics\/234884\/us-online-shopper-conversion-rate-by-device\/, (Accessed 14 February 2018)."},{"key":"10.1016\/j.is.2018.09.001_b6","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1016\/j.ins.2016.10.009","article-title":"A probabilistic model for recommending to new cold-start non-registered users","volume":"376","author":"Hernando","year":"2017","journal-title":"Inform. Sci."},{"key":"10.1016\/j.is.2018.09.001_b7","series-title":"Neural Networks (IJCNN), 2017 International Joint Conference on","first-page":"3656","article-title":"Cold-start, warm-start and everything in between: An autoencoder based approach to recommendation","author":"Majumdar","year":"2017"},{"key":"10.1016\/j.is.2018.09.001_b8","series-title":"Proceedings of the 7th ACM conference on Recommender systems","first-page":"265","article-title":"Using maximum coverage to optimize recommendation systems in e-commerce","author":"Hammar","year":"2013"},{"key":"10.1016\/j.is.2018.09.001_b9","series-title":"Proceedings of the 10th ACM Conference on Recommender Systems","first-page":"15","article-title":"A coverage-based approach to recommendation diversity on similarity graph","author":"Puthiya\u00a0Parambath","year":"2016"},{"issue":"7","key":"10.1016\/j.is.2018.09.001_b10","doi-asserted-by":"crossref","first-page":"3261","DOI":"10.1016\/j.eswa.2013.11.010","article-title":"Leveraging clustering approaches to solve the gray-sheep users problem in recommender systems","volume":"41","author":"Ghazanfar","year":"2014","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.is.2018.09.001_b11","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.knosys.2015.02.016","article-title":"Simultaneous co-clustering and learning to address the cold start problem in recommender systems","volume":"82","author":"Pereira","year":"2015","journal-title":"Knowl.-Based Syst."},{"issue":"4","key":"10.1016\/j.is.2018.09.001_b12","doi-asserted-by":"crossref","first-page":"2065","DOI":"10.1016\/j.eswa.2013.09.005","article-title":"Facing the cold start problem in recommender systems","volume":"41","author":"Lika","year":"2014","journal-title":"Expert Syst. Appl."},{"issue":"6","key":"10.1016\/j.is.2018.09.001_b13","doi-asserted-by":"crossref","first-page":"734","DOI":"10.1109\/TKDE.2005.99","article-title":"Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions","volume":"17","author":"Adomavicius","year":"2005","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.is.2018.09.001_b14","series-title":"Proceedings of the 9th ACM Conference on Recommender Systems","first-page":"91","article-title":"Cold-start item and user recommendation with decoupled completion and transduction","author":"Barjasteh","year":"2015"},{"key":"10.1016\/j.is.2018.09.001_b15","series-title":"International Conference on User Modeling, Adaptation, and Personalization","first-page":"289","article-title":"User model in a box: Cross-system user model transfer for resolving cold start problems","author":"Wongchokprasitti","year":"2015"},{"issue":"10","key":"10.1016\/j.is.2018.09.001_b16","doi-asserted-by":"crossref","first-page":"4511","DOI":"10.1073\/pnas.1000488107","article-title":"Solving the apparent diversity-accuracy dilemma of recommender systems","volume":"107","author":"Zhou","year":"2010","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.is.2018.09.001_b17","series-title":"Proceedings of the 9th ACM Conference on Recommender Systems","first-page":"359","article-title":"Interactive recommender systems: Tutorial","author":"Steck","year":"2015"},{"key":"10.1016\/j.is.2018.09.001_b18","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.eswa.2016.02.013","article-title":"Interactive recommender systems: A survey of the state of the art and future research challenges and opportunities","volume":"56","author":"He","year":"2016","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.is.2018.09.001_b19","doi-asserted-by":"crossref","unstructured":"B. Chikhaoui, M. Chiazzaro, S. Wang, An improved hybrid recommender system by combining predictions, in: Advanced Information Networking and Applications (WAINA), 2011 IEEE Workshops of International Conference on, 2011, pp. pp. 644\u2013649, 2011, http:\/\/dx.doi.org\/10.1109\/WAINA.2011.12.","DOI":"10.1109\/WAINA.2011.12"},{"issue":"3","key":"10.1016\/j.is.2018.09.001_b20","doi-asserted-by":"crossref","first-page":"303","DOI":"10.7763\/LNSE.2013.V1.66","article-title":"Exploiting user demographic attributes for solving cold-start problem in recommender system","volume":"1","author":"Safoury","year":"2013","journal-title":"Lect. Notes Softw. Eng."},{"issue":"1","key":"10.1016\/j.is.2018.09.001_b21","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1007\/s10586-014-0355-2","article-title":"Alleviating the cold-start problem by incorporating movies facebook pages","volume":"18","author":"Rosli","year":"2015","journal-title":"Cluster Comput."},{"key":"10.1016\/j.is.2018.09.001_b22","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.is.2015.07.008","article-title":"Social networks and information retrieval, how are they converging? A survey, a taxonomy and an analysis of social information retrieval approaches and platforms","volume":"56","author":"Bouadjenek","year":"2016","journal-title":"Inf. Syst."},{"issue":"12","key":"10.1016\/j.is.2018.09.001_b23","doi-asserted-by":"crossref","first-page":"10990","DOI":"10.1016\/j.eswa.2012.03.025","article-title":"Social knowledge-based recommender system. Application to the movies domain","volume":"39","author":"Carrer-Neto","year":"2012","journal-title":"Exp. Syst. Appl."},{"issue":"9","key":"10.1016\/j.is.2018.09.001_b24","first-page":"22","article-title":"Non-personalized recommender systems and user-based collaborative recommender systems","volume":"6","author":"Poriya","year":"2014","journal-title":"Int. J. Appl. Inf. Syst."},{"key":"10.1016\/j.is.2018.09.001_b25","series-title":"Proceedings of the 14th international conference on World Wide Web","first-page":"22","article-title":"Improving recommendation lists through topic diversification","author":"Ziegler","year":"2005"},{"key":"10.1016\/j.is.2018.09.001_b26","series-title":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","first-page":"1211","article-title":"Intent-oriented diversity in recommender systems","author":"Vargas","year":"2011"},{"key":"10.1016\/j.is.2018.09.001_b27","series-title":"Proceedings of the 8th ACM Conference on Recommender systems","first-page":"209","article-title":"Coverage, redundancy and size-awareness in genre diversity for recommender systems","author":"Vargas","year":"2014"},{"key":"10.1016\/j.is.2018.09.001_b28","series-title":"Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval","first-page":"65","article-title":"Diversity by proportionality: an election-based approach to search result diversification","author":"Dang","year":"2012"},{"issue":"4","key":"10.1016\/j.is.2018.09.001_b29","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1145\/1944339.1944341","article-title":"Novelty and diversity in top-n recommendation\u2013analysis and evaluation","volume":"10","author":"Hurley","year":"2011","journal-title":"ACM Trans. Internet Tech. (TOIT)"},{"key":"10.1016\/j.is.2018.09.001_b30","unstructured":"B. Mobasher, R. Burke, R. Bhaumik, C. Williams, Effective attack models for shilling item-based collaborative filtering systems, in: Proceedings of the 2005 WebKDD Workshop, held in conjuction with ACM SIGKDD, vol. 2005, 2005, http:\/\/webdocs.cs.ualberta.ca\/\u00a0zaiane\/pub\/21.mobasher.pdf."},{"key":"10.1016\/j.is.2018.09.001_b31","series-title":"Proceedings of the 21st ACM international conference on Information and knowledge management","first-page":"2010","article-title":"Query recommendation for children","author":"Duarte\u00a0Torres","year":"2012"},{"issue":"3","key":"10.1016\/j.is.2018.09.001_b32","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1287\/moor.4.3.233","article-title":"A greedy heuristic for the set-covering problem","volume":"4","author":"Chvatal","year":"1979","journal-title":"Math. Oper. Res."},{"key":"10.1016\/j.is.2018.09.001_b33","doi-asserted-by":"crossref","unstructured":"A. Lacerda, N. Ziviani, Building user profiles to improve user experience in recommender systems, in: Proceedings of the 6th ACM WSDM, 2013, pp. 759\u2013764, http:\/\/dx.doi.org\/10.1145\/2433396.2433492.","DOI":"10.1145\/2433396.2433492"},{"key":"10.1016\/j.is.2018.09.001_b34","doi-asserted-by":"crossref","unstructured":"Y.-C. Ho, Y.-T. Chiang, J.Y.-J. Hsu, Who likes it more?: mining worth-recommending items from long tails by modeling relative preference, in: Proceedings of the 7th ACM WSDM, 2014, pp. 253\u2013262, http:\/\/dx.doi.org\/10.1145\/2556195.2566589.","DOI":"10.1145\/2556195.2566589"},{"key":"10.1016\/j.is.2018.09.001_b35","series-title":"Proceedings of the Third ACM Conference on Recommender Systems","first-page":"397","article-title":"Enhancing diversity in top-n recommendation","author":"Zhang","year":"2009"},{"key":"10.1016\/j.is.2018.09.001_b36","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1007\/978-0-387-85820-3_8","article-title":"Evaluating recommendation systems","author":"Shani","year":"2011","journal-title":"Recommender Systems Handbook"},{"key":"10.1016\/j.is.2018.09.001_b37","series-title":"Proceedings of the Fifth ACM Conference on Recommender Systems","first-page":"109","article-title":"Rank and relevance in novelty and diversity metrics for recommender systems","author":"Vargas","year":"2011"},{"key":"10.1016\/j.is.2018.09.001_b38","unstructured":"P. Cremonesi, A. Donatacci, F. Garzotto, R. Turrin, Decision-making in recommender systems: the role of user\u2019s goals and bounded resources, in: Decisions@ RecSys, 2012, pp. 1\u20137."},{"key":"10.1016\/j.is.2018.09.001_b39","series-title":"Proceedings of the 9th ACM Conference on Recommender Systems","first-page":"347","article-title":"Joint workshop on interfaces and human decision making for recommender systems (# IntRS)","author":"O\u2019Donovan","year":"2015"}],"container-title":["Information Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0306437918303260?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0306437918303260?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,12,6]],"date-time":"2018-12-06T18:00:11Z","timestamp":1544119211000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0306437918303260"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,2]]},"references-count":39,"alternative-id":["S0306437918303260"],"URL":"https:\/\/doi.org\/10.1016\/j.is.2018.09.001","relation":{},"ISSN":["0306-4379"],"issn-type":[{"type":"print","value":"0306-4379"}],"subject":[],"published":{"date-parts":[[2019,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"The Pure Cold-Start Problem: A deep study about how to conquer first-time users in recommendations domains","name":"articletitle","label":"Article Title"},{"value":"Information Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.is.2018.09.001","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}