{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T11:06:10Z","timestamp":1726484770123},"reference-count":24,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,3,1]],"date-time":"2017-03-01T00:00:00Z","timestamp":1488326400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"PIA Datalyse project"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Systems"],"published-print":{"date-parts":[[2017,3]]},"DOI":"10.1016\/j.is.2016.09.001","type":"journal-article","created":{"date-parts":[[2016,9,22]],"date-time":"2016-09-22T04:31:56Z","timestamp":1474518716000},"page":"104-118","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["TopPI: An efficient algorithm for item-centric mining"],"prefix":"10.1016","volume":"64","author":[{"given":"V.","family":"Leroy","sequence":"first","affiliation":[]},{"given":"M.","family":"Kirchgessner","sequence":"additional","affiliation":[]},{"given":"A.","family":"Termier","sequence":"additional","affiliation":[]},{"given":"S.","family":"Amer-Yahia","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.is.2016.09.001_bib1","unstructured":"R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large databases, in: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), 1994, pp. 487\u2013499."},{"key":"10.1016\/j.is.2016.09.001_bib2","doi-asserted-by":"crossref","unstructured":"H. Li, Y. Wang, D. Zhang, M. Zhang, E.Y. Chang, Pfp: parallel fp-growth for query recommendation, in: Proceedings of the Second Conference on Recommender Systems (RecSys), 2008, pp. 107\u2013114.","DOI":"10.1145\/1454008.1454027"},{"key":"10.1016\/j.is.2016.09.001_bib3","doi-asserted-by":"crossref","unstructured":"S. Goel, A. Broder, E. Gabrilovich, B. Pang, Anatomy of the long tail: ordinary people with extraordinary tastes, in: Proceedings of the Third International Conference on Web Search and Data Mining (WSDM), 2010, pp. 201\u2013210.","DOI":"10.1145\/1718487.1718513"},{"key":"10.1016\/j.is.2016.09.001_bib4","doi-asserted-by":"crossref","unstructured":"T. Uno, M. Kiyomi, H. Arimura, Lcm ver. 2: efficient mining algorithms for frequent\/closed\/maximal itemsets, in: Proceedings of the Workshop on Frequent Itemset Mining Implementations (FIMI), 2004.","DOI":"10.1145\/1133905.1133916"},{"key":"10.1016\/j.is.2016.09.001_bib5","unstructured":"J. Han, J. Wang, Y. Lu, P. Tzvetkov, Mining top-k frequent closed patterns without minimum support, in: Proceedings of the International Conference on Data Mining (ICDM), IEEE, 2002, pp. 211\u2013218."},{"key":"10.1016\/j.is.2016.09.001_bib6","doi-asserted-by":"crossref","unstructured":"N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent closed itemsets for association rules, in: Proceedings of the 7th International Conference on Database Theory (ICDT), 1999, pp. 398\u2013416.","DOI":"10.1007\/3-540-49257-7_25"},{"key":"10.1016\/j.is.2016.09.001_bib7","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1007\/978-3-540-30214-8_2","article-title":"An efficient algorithm for enumerating closed patterns in transaction databases","author":"Uno","year":"2004","journal-title":"Discov. Sci."},{"key":"10.1016\/j.is.2016.09.001_bib8","doi-asserted-by":"crossref","unstructured":"R. Fagin, A. Lotem, M. Naor, Optimal aggregation algorithms for middleware, in: Proceedings of the Twentieth Symposium on Principles of Database Systems (PODS), 2001, pp. 102\u2013113.","DOI":"10.1145\/375551.375567"},{"key":"10.1016\/j.is.2016.09.001_bib9","unstructured":"J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters, in: Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI), 2004."},{"key":"10.1016\/j.is.2016.09.001_bib10","doi-asserted-by":"crossref","unstructured":"B. N\u00e9grevergne, A. Termier, J.-F. M\u00e9haut, T. Uno, Discovering closed frequent itemsets on multicore: parallelizing computations and optimizing memory accesses, in: Proceedings of the International Conference on High Performance Computing and Simulation (HPCS), 2010, pp. 521\u2013528.","DOI":"10.1109\/HPCS.2010.5547082"},{"key":"10.1016\/j.is.2016.09.001_bib11","unstructured":"Apache Mahout Library, \u3008http:\/\/mahout.apache.org\/\u3009."},{"key":"10.1016\/j.is.2016.09.001_bib12","doi-asserted-by":"crossref","unstructured":"M. Kirchgessner, V. Leroy, S. Amer-Yahia, S. Mishra, Intermarch\u00e9 Alimentaire International Stime, Testing interestingness measures in practice: a large-scale analysis of buying patterns, in: Proceedings of the International Conference on Data Science and Advanced Analytics (DSAA), 2016, in press.","DOI":"10.1109\/DSAA.2016.53"},{"key":"10.1016\/j.is.2016.09.001_bib13","doi-asserted-by":"crossref","unstructured":"L. Geng, H.J. Hamilton, Interestingness measures for data mining: a survey, ACM Comput. Surv. 38 (3) (2006).","DOI":"10.1145\/1132960.1132963"},{"key":"10.1016\/j.is.2016.09.001_bib14","unstructured":"S.-I. Minato, T. Uno, K. Tsuda, A. Terada, J. Sese, A fast method of statistical assessment for combinatorial hypotheses based on frequent itemset enumeration, in: Machine Learning and Knowledge Discovery in Databases, vol. 8725, Springer, 2014, pp. 422\u2013436."},{"key":"10.1016\/j.is.2016.09.001_bib15","unstructured":"J. Pei, J. Han, R. Mao, Closet: an efficient algorithm for mining frequent closed itemsets, in: ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, vol. 4, 2000, pp. 21\u201330."},{"issue":"2","key":"10.1016\/j.is.2016.09.001_bib16","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/335191.335372","article-title":"Mining frequent patterns without candidate generation","volume":"29","author":"Han","year":"2000","journal-title":"SIGMOD Rec."},{"issue":"1","key":"10.1016\/j.is.2016.09.001_bib17","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1007\/s00778-006-0025-y","article-title":"Cache-conscious frequent pattern mining on modern and emerging processors","volume":"16","author":"Ghoting","year":"2007","journal-title":"VLDB J."},{"key":"10.1016\/j.is.2016.09.001_bib18","doi-asserted-by":"crossref","unstructured":"M.-Y. Lin, P.-Y. Lee, S.-C. Hsueh, Apriori-based frequent itemset mining algorithms on mapreduce, in: Proceedings of the 6th International Conference on Ubiquitous Information Management and Communication (ICUIMC), 2012 (Article no. 76).","DOI":"10.1145\/2184751.2184842"},{"key":"10.1016\/j.is.2016.09.001_bib19","doi-asserted-by":"crossref","unstructured":"S. Moens, E. Aksehirli, B. Goethals, Frequent itemset mining for big data, in: SML: BigData 2013 Workshop on Scalable Machine Learning, IEEE, 2013.","DOI":"10.1109\/BigData.2013.6691742"},{"key":"10.1016\/j.is.2016.09.001_bib20","doi-asserted-by":"crossref","unstructured":"M. Riondato, J.A. DeBrabant, R. Fonseca, E. Upfal, Parma: a parallel randomized algorithm for approximate association rules mining in mapreduce, in: Proceedings of the 21st International Conference on Information and Knowledge Management (CIKM), 2012, pp. 85\u201394.","DOI":"10.1145\/2396761.2396776"},{"key":"10.1016\/j.is.2016.09.001_bib21","doi-asserted-by":"crossref","unstructured":"W. Hamalainen, M. Nykanen, Efficient discovery of statistically significant association rules, in: Eighth IEEE International Conference on Data Mining, 2008. ICDM'08, IEEE, 2008, pp. 203\u2013212.","DOI":"10.1109\/ICDM.2008.144"},{"key":"10.1016\/j.is.2016.09.001_bib22","doi-asserted-by":"crossref","unstructured":"G. Liu, M. Feng, Y. Wang, L. Wong, S.-K. Ng, T. L. Mah, E. J. D. Lee, Towards exploratory hypothesis testing and analysis, in: ICDE, 2011, pp. 745\u2013756.","DOI":"10.1109\/ICDE.2011.5767907"},{"key":"10.1016\/j.is.2016.09.001_bib23","doi-asserted-by":"crossref","unstructured":"Y. Le Bras, P. Lenca, S. Lallich, Mining interesting rules without support requirement: a general universal existential upward closure property, Vol. 8 of Annals of information systems, Springer, 2010, Ch. Data Mining, pp. 75\u201398","DOI":"10.1007\/978-1-4419-1280-0_4"},{"key":"10.1016\/j.is.2016.09.001_bib24","unstructured":"C. Anderson, The Long Tail: Why the Future of Business Is Selling Less of More, Hyperion, 2006."}],"container-title":["Information Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0306437916303787?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0306437916303787?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,11,2]],"date-time":"2019-11-02T13:59:54Z","timestamp":1572703194000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0306437916303787"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,3]]},"references-count":24,"alternative-id":["S0306437916303787"],"URL":"https:\/\/doi.org\/10.1016\/j.is.2016.09.001","relation":{},"ISSN":["0306-4379"],"issn-type":[{"type":"print","value":"0306-4379"}],"subject":[],"published":{"date-parts":[[2017,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"TopPI: An efficient algorithm for item-centric mining","name":"articletitle","label":"Article Title"},{"value":"Information Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.is.2016.09.001","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}