{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T01:03:55Z","timestamp":1725584635327},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,3,1]],"date-time":"2017-03-01T00:00:00Z","timestamp":1488326400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Systems"],"published-print":{"date-parts":[[2017,3]]},"DOI":"10.1016\/j.is.2015.11.002","type":"journal-article","created":{"date-parts":[[2015,11,19]],"date-time":"2015-11-19T12:42:11Z","timestamp":1447936931000},"page":"350-367","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":53,"special_numbering":"C","title":["MyWay: Location prediction via mobility profiling"],"prefix":"10.1016","volume":"64","author":[{"given":"R.","family":"Trasarti","sequence":"first","affiliation":[]},{"given":"R.","family":"Guidotti","sequence":"additional","affiliation":[]},{"given":"A.","family":"Monreale","sequence":"additional","affiliation":[]},{"given":"F.","family":"Giannotti","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5968","key":"10.1016\/j.is.2015.11.002_bib1","doi-asserted-by":"crossref","first-page":"1018","DOI":"10.1126\/science.1177170","article-title":"Limits of predictability in human mobility","volume":"327","author":"Song","year":"2010","journal-title":"Science"},{"issue":"7196","key":"10.1016\/j.is.2015.11.002_bib2","doi-asserted-by":"crossref","first-page":"779","DOI":"10.1038\/nature06958","article-title":"Understanding individual human mobility patterns","volume":"453","author":"Gonzalez","year":"2008","journal-title":"Nature"},{"key":"10.1016\/j.is.2015.11.002_bib3","doi-asserted-by":"crossref","unstructured":"R. Trasarti, F. Pinelli, M. Nanni, F. Giannotti, Mining mobility user profiles for car pooling, in: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Diego, 2011, pp. 1190\u20131198.","DOI":"10.1145\/2020408.2020591"},{"key":"10.1016\/j.is.2015.11.002_bib4","doi-asserted-by":"crossref","unstructured":"O. Abul, F. Bonchi, M. Nanni, Never walk alone: uncertainty for anonymity in moving objects databases, in: ICDE, 2008, pp. 376\u2013385.","DOI":"10.1109\/ICDE.2008.4497446"},{"key":"10.1016\/j.is.2015.11.002_bib5","doi-asserted-by":"crossref","unstructured":"M. Terrovitis, N. Mamoulis, Privacy preservation in the publication of trajectories, in: MDM, 2008, pp. 65\u201372.","DOI":"10.1109\/MDM.2008.29"},{"issue":"1","key":"10.1016\/j.is.2015.11.002_bib6","first-page":"47","article-title":"Towards trajectory anonymization: a generalization-based approach","volume":"2","author":"Nergiz","year":"2009","journal-title":"Trans. Data Priv."},{"issue":"1","key":"10.1016\/j.is.2015.11.002_bib7","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1140\/epjds\/s13688-014-0010-4","article-title":"Privacy-by-design in big data analytics and social mining","volume":"3","author":"Anna","year":"2014","journal-title":"EPJ Data Sci."},{"key":"10.1016\/j.is.2015.11.002_bib8","series-title":"Computer and Information Sciences-ISCIS 2006","first-page":"583","article-title":"Prediction of moving object location based on frequent trajectories","author":"Morzy","year":"2006"},{"key":"10.1016\/j.is.2015.11.002_bib9","series-title":"Machine Learning and Data Mining in Pattern Recognition","first-page":"667","article-title":"Mining frequent trajectories of moving objects for location prediction","author":"Morzy","year":"2007"},{"key":"10.1016\/j.is.2015.11.002_bib10","doi-asserted-by":"crossref","unstructured":"A. Monreale, F. Pinelli, R. Trasarti, F. Giannotti, Wherenext: a location predictor on trajectory pattern mining, in: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, Paris, 2009, pp. 637\u2013646.","DOI":"10.1145\/1557019.1557091"},{"issue":"6","key":"10.1016\/j.is.2015.11.002_bib11","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1016\/j.pmcj.2010.08.004","article-title":"A system for destination and future route prediction based on trajectory mining","volume":"6","author":"Chen","year":"2010","journal-title":"Pervasive Mob. Comput."},{"key":"10.1016\/j.is.2015.11.002_bib12","doi-asserted-by":"crossref","unstructured":"P.-R. Lei, T.-J. Shen, W.-C. Peng, J. Su, Exploring spatial-temporal trajectory model for location prediction, in: 2011 12th IEEE International Conference on Mobile Data Management (MDM), vol. 1, IEEE, 2011, pp. 58\u201367.","DOI":"10.1109\/MDM.2011.61"},{"key":"10.1016\/j.is.2015.11.002_bib13","doi-asserted-by":"crossref","unstructured":"G. Gid\u00f3falvi, F. Dong, When and where next: individual mobility prediction, in: Proceedings of the First ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems, ACM, Redondo Beach, 2012, pp. 57\u201364.","DOI":"10.1145\/2442810.2442821"},{"key":"10.1016\/j.is.2015.11.002_bib14","doi-asserted-by":"crossref","unstructured":"A. Bachmann, C. Borgelt, G. Gid\u00f3falvi, Incremental frequent route based trajectory prediction, in: Proceedings of the Sixth ACM SIGSPATIAL International Workshop on Computational Transportation Science, IWCTS \u201913, 2013, pp. 49:49\u201349:54.","DOI":"10.1145\/2533828.2533840"},{"key":"10.1016\/j.is.2015.11.002_bib15","doi-asserted-by":"crossref","unstructured":"H. Jeung, Q. Liu, H.T. Shen, X. Zhou, A hybrid prediction model for moving objects, in: 2008 24th International Conference on Data Engineering, ICDE 2008, IEEE, pp. 70\u201379.","DOI":"10.1109\/ICDE.2008.4497415"},{"key":"10.1016\/j.is.2015.11.002_bib16","series-title":"Web-Age Information Management","first-page":"74","article-title":"Hotspot district trajectory prediction","author":"Li","year":"2010"},{"key":"10.1016\/j.is.2015.11.002_bib17","series-title":"Pervasive Comput.","first-page":"152","article-title":"Nextplace: a spatio-temporal prediction framework for pervasive systems","author":"Scellato","year":"2011"},{"key":"10.1016\/j.is.2015.11.002_bib18","unstructured":"M. Ceci, A. Appice, D. Malerba, Time-slice density estimation for semantic-based tourist destination suggestion, in: ECAI, 2010, pp. 1107\u20131108."},{"key":"10.1016\/j.is.2015.11.002_bib19","doi-asserted-by":"crossref","unstructured":"M. Nishino, Y. Nakamura, T. Yagi, S. Muto, M. Abe, A location predictor based on dependencies between multiple lifelog data, in: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks, ACM, San Jose, 2010, pp. 11\u201317.","DOI":"10.1145\/1867699.1867702"},{"key":"10.1016\/j.is.2015.11.002_bib20","doi-asserted-by":"crossref","unstructured":"T. Anagnostopoulos, C. Anagnostopoulos, S. Hadjiefthymiades, Mobility prediction based on machine learning, in: 2011 12th IEEE International Conference on Mobile Data Management (MDM), vol. 2, IEEE, 2011, pp. 27\u201330.","DOI":"10.1109\/MDM.2011.60"},{"key":"10.1016\/j.is.2015.11.002_bib21","unstructured":"L.H. Tran, M. Catasta, L.K. McDowell, K. Aberer, Next place prediction using mobile data, in: Proceedings of the Mobile Data Challenge Workshop (MDC 2012), no. EPFL-CONF-182131, 2012."},{"key":"10.1016\/j.is.2015.11.002_bib22","unstructured":"Y. Zhu, Y. Sun, Y. Wang, Nokia mobile data challenge: predicting semantic place and next place via mobile data, in: 2012 Workshop on Mobile Data Challenge, 2012."},{"key":"10.1016\/j.is.2015.11.002_bib23","series-title":"Knowledge-Based Intelligent Information and Engineering Systems","first-page":"379","article-title":"Path prediction of moving objects on road networks through analyzing past trajectories","author":"Kim","year":"2007"},{"issue":"4","key":"10.1016\/j.is.2015.11.002_bib24","doi-asserted-by":"crossref","first-page":"585","DOI":"10.1007\/s00778-010-0181-y","article-title":"Path prediction and predictive range querying in road network databases","volume":"19","author":"Jeung","year":"2010","journal-title":"VLDB J."},{"key":"10.1016\/j.is.2015.11.002_bib25","series-title":"Data Warehousing and Knowledge Discovery","first-page":"146","article-title":"Where will you go? Mobile data mining for next place prediction","author":"Gomes","year":"2013"},{"key":"10.1016\/j.is.2015.11.002_bib26","series-title":"Advances in Knowledge Discovery and Data Mining","first-page":"210","article-title":"Brownian bridge model for high resolution location predictions","author":"Lin","year":"2014"},{"key":"10.1016\/j.is.2015.11.002_bib27","unstructured":"N. Yang, X. Kong, F. Wang, P.S. Yu, When and where: predicting human movements based on social spatial-temporal events, arXiv preprint arXiv:1407.1450."},{"key":"10.1016\/j.is.2015.11.002_bib28","doi-asserted-by":"crossref","unstructured":"J.J.-C. Ying, W.-C. Lee, T.-C. Weng, V.S. Tseng, Semantic trajectory mining for location prediction, in: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM, Chicago, 2011, pp. 34\u201343.","DOI":"10.1145\/2093973.2093980"},{"issue":"6","key":"10.1016\/j.is.2015.11.002_bib29","doi-asserted-by":"crossref","first-page":"798","DOI":"10.1016\/j.pmcj.2013.07.008","article-title":"Interdependence and predictability of human mobility and social interactions","volume":"9","author":"de Domenico","year":"2013","journal-title":"Pervasive Mob. Comput."},{"key":"10.1016\/j.is.2015.11.002_bib30","series-title":"UbiComp 2006: Ubiquitous Computing","first-page":"243","article-title":"Predestination: inferring destinations from partial trajectories","author":"Krumm","year":"2006"},{"issue":"2","key":"10.1016\/j.is.2015.11.002_bib31","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.datak.2004.09.004","article-title":"A data mining approach for location prediction in mobile environments","volume":"54","author":"Yava\u015f","year":"2005","journal-title":"Data Knowl. Eng."},{"issue":"6","key":"10.1016\/j.is.2015.11.002_bib32","doi-asserted-by":"crossref","first-page":"914","DOI":"10.1109\/TKDE.2010.155","article-title":"Mining cluster-based temporal mobile sequential patterns in location-based service environments","volume":"23","author":"Lu","year":"2011","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"3","key":"10.1016\/j.is.2015.11.002_bib33","first-page":"200","article-title":"A frequent pattern based prediction model for moving objects","volume":"10","author":"Kang","year":"2010","journal-title":"Int. J. Comput. Sci. Netw. Secur"},{"key":"10.1016\/j.is.2015.11.002_bib34","unstructured":"I. Burbey, Predicting future locations and arrival times of individuals."},{"key":"10.1016\/j.is.2015.11.002_bib35","series-title":"Machine Learning and Knowledge Discovery in Databases","first-page":"417","article-title":"Future locations prediction with uncertain data","author":"Qiu","year":"2013"},{"key":"10.1016\/j.is.2015.11.002_bib36","first-page":"1","article-title":"A novel vehicular location prediction based on mobility patterns for routing in urban vanet","volume":"1","author":"Xue","year":"2012","journal-title":"EURASIP J. Wirel. Commun. Netw."},{"key":"10.1016\/j.is.2015.11.002_bib37","series-title":"Web Technologies and Applications","first-page":"77","article-title":"Discrete trajectory prediction on mobile data","author":"Zhao","year":"2011"},{"issue":"5","key":"10.1016\/j.is.2015.11.002_bib38","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1007\/s00779-003-0240-0","article-title":"Using gps to learn significant locations and predict movement across multiple users","volume":"7","author":"Ashbrook","year":"2003","journal-title":"Pers. Ubiquitous Comput."},{"key":"10.1016\/j.is.2015.11.002_bib39","doi-asserted-by":"crossref","unstructured":"D. Barth, S. Bellahsene, L. Kloul, Combining local and global profiles for mobility prediction in lte femtocells, in: Proceedings of the 15th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, ACM, New York, 2012, pp. 333\u2013342.","DOI":"10.1145\/2387238.2387295"},{"key":"10.1016\/j.is.2015.11.002_bib40","series-title":"Advances in Knowledge Discovery and Data Mining","first-page":"186","article-title":"Nlpmm: a next location predictor with Markov modeling","author":"Chen","year":"2014"},{"key":"10.1016\/j.is.2015.11.002_bib41","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.pmcj.2013.03.006","article-title":"Where and what: using smartphones to predict next locations and applications in daily life","volume":"12","author":"Do","year":"2014","journal-title":"Pervasive Mob. Comput."},{"key":"10.1016\/j.is.2015.11.002_bib42","first-page":"49","article-title":"Optics: ordering points to identify the clustering structure","volume":"28","author":"Ankerst","year":"1999"},{"key":"10.1016\/j.is.2015.11.002_bib43","doi-asserted-by":"crossref","unstructured":"G. Andrienko, N. Andrienko, S. Rinzivillo, M. Nanni, D. Pedreschi, F. Giannotti, Interactive visual clustering of large collections of trajectories, in: IEEE Symposium on Visual Analytics Science and Technology, 2009, VAST 2009, IEEE, 2009, pp. 3\u201310.","DOI":"10.1109\/VAST.2009.5332584"},{"issue":"5","key":"10.1016\/j.is.2015.11.002_bib44","doi-asserted-by":"crossref","first-page":"695","DOI":"10.1007\/s00778-011-0244-8","article-title":"Unveiling the complexity of human mobility by querying and mining massive trajectory data","volume":"20","author":"Giannotti","year":"2011","journal-title":"VLDB J. Int. J. Very Large Data Bases"},{"issue":"2\u20133","key":"10.1016\/j.is.2015.11.002_bib45","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1007\/s10994-005-5830-9","article-title":"Elastic translation invariant matching of trajectories","volume":"58","author":"Vlachos","year":"2005","journal-title":"Mach. Learn."},{"key":"10.1016\/j.is.2015.11.002_bib46","unstructured":"D.J. Berndt, J. Clifford, Using dynamic time warping to find patterns in time series, in: Knowledge Discovery in Databases: Papers from the 1994 AAAI Workshop, Seattle, Washington, July 1994, Technical Report WS-94-03, 1994, pp. 359\u2013370."},{"issue":"3","key":"10.1016\/j.is.2015.11.002_bib47","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s00778-005-0163-7","article-title":"Spatio-temporal data reduction with deterministic error bounds","volume":"15","author":"Cao","year":"2006","journal-title":"VLDB J."},{"key":"10.1016\/j.is.2015.11.002_bib48","doi-asserted-by":"crossref","unstructured":"R. Agrawal, C. Faloutsos, A.N. Swami, Efficient similarity search in sequence databases, in: 1993 Proceedings of 4th International Conference on Foundations of Data Organization and Algorithms, FODO\u05f393, Chicago, Illinois, USA, October 13\u201315, 1993, pp. 69\u201384.","DOI":"10.1007\/3-540-57301-1_5"},{"key":"10.1016\/j.is.2015.11.002_bib49","doi-asserted-by":"crossref","unstructured":"Y. Cai, R.T. Ng, Indexing spatio-temporal trajectories with Chebyshev polynomials, in: 2004 Proceedings of the ACM SIGMOD International Conference on Management of Data, Paris, France, June 13\u201318, 2004, pp. 599\u2013610.","DOI":"10.1145\/1007568.1007636"},{"key":"10.1016\/j.is.2015.11.002_bib50","unstructured":"C. Kalapesi, Unlocking the value of personal data: from collection to usage, in: World Economic Forum Technical Report, 2013."},{"issue":"10","key":"10.1016\/j.is.2015.11.002_bib51","doi-asserted-by":"crossref","first-page":"1301","DOI":"10.1109\/TSMC.2014.2316742","article-title":"Intelligent trajectory classification for improved movement prediction","volume":"44","author":"Anagnostopoulos","year":"2014","journal-title":"IEEE Trans. Syst. Man Cybern.: Syst."}],"container-title":["Information Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0306437915001945?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0306437915001945?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,11,2]],"date-time":"2019-11-02T09:58:42Z","timestamp":1572688722000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0306437915001945"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,3]]},"references-count":51,"alternative-id":["S0306437915001945"],"URL":"https:\/\/doi.org\/10.1016\/j.is.2015.11.002","relation":{},"ISSN":["0306-4379"],"issn-type":[{"value":"0306-4379","type":"print"}],"subject":[],"published":{"date-parts":[[2017,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"MyWay: Location prediction via mobility profiling","name":"articletitle","label":"Article Title"},{"value":"Information Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.is.2015.11.002","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}]}}