{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T00:24:56Z","timestamp":1726014296040},"reference-count":56,"publisher":"Elsevier BV","issue":"6","license":[{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Processing & Management"],"published-print":{"date-parts":[[2024,11]]},"DOI":"10.1016\/j.ipm.2024.103804","type":"journal-article","created":{"date-parts":[[2024,7,15]],"date-time":"2024-07-15T18:04:46Z","timestamp":1721066686000},"page":"103804","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"title":["CMACF: Transformer-based cross-modal attention cross-fusion model for systemic lupus erythematosus diagnosis combining Raman spectroscopy, FTIR spectroscopy, and metabolomics"],"prefix":"10.1016","volume":"61","author":[{"given":"Xuguang","family":"Zhou","sequence":"first","affiliation":[]},{"given":"Chen","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Xiaoyi","family":"Lv","sequence":"additional","affiliation":[]},{"given":"Enguang","family":"Zuo","sequence":"additional","affiliation":[]},{"given":"Min","family":"Li","sequence":"additional","affiliation":[]},{"given":"Lijun","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Xiaomei","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Xue","family":"Wu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6739-1937","authenticated-orcid":false,"given":"Cheng","family":"Chen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.ipm.2024.103804_bib0056","doi-asserted-by":"crossref","first-page":"628","DOI":"10.2174\/156720512801322573","article-title":"Overview and findings from the religious orders study","volume":"9","author":"A Bennett","year":"2012","journal-title":"Current Alzheimer Research"},{"issue":"6","key":"10.1016\/j.ipm.2024.103804_bib0027","doi-asserted-by":"crossref","first-page":"758","DOI":"10.1136\/annrheumdis-2020-219069","article-title":"Lupus or not? SLE risk probability index (SLERPI): a simple, clinician-friendly machine learning-based model to assist the diagnosis of systemic lupus erythematosus","volume":"80","author":"Adamichou","year":"2021","journal-title":"Annals of the rheumatic diseases"},{"key":"10.1016\/j.ipm.2024.103804_bib0014","doi-asserted-by":"crossref","DOI":"10.1016\/j.pdpdt.2023.103505","article-title":"Raman scattering-based optical sensing of chronic liver diseases","author":"Alkhuder","year":"2023","journal-title":"Photodiagnosis and Photodynamic Therapy"},{"key":"10.1016\/j.ipm.2024.103804_bib0015","doi-asserted-by":"crossref","DOI":"10.1016\/j.pdpdt.2023.103606","article-title":"Fourier-transform infrared spectroscopy: A universal optical sensing technique with auspicious application prospects in the diagnosis and management of autoimmune diseases","author":"Alkhuder","year":"2023","journal-title":"Photodiagnosis and Photodynamic Therapy"},{"issue":"1","key":"10.1016\/j.ipm.2024.103804_bib0022","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1038\/s41524-024-01236-3","article-title":"Automated all-functionals infrared and Raman spectra","volume":"10","author":"Bastonero","year":"2024","journal-title":"npj Computational Materials"},{"issue":"6","key":"10.1016\/j.ipm.2024.103804_bib0021","doi-asserted-by":"crossref","first-page":"e1298","DOI":"10.1002\/ctm2.1298","article-title":"Integrated metabolic and genetic analysis reveals distinct features of human differentiated thyroid cancer","volume":"13","author":"Cararo Lopes","year":"2023","journal-title":"Clinical and Translational Medicine"},{"issue":"2","key":"10.1016\/j.ipm.2024.103804_bib0030","doi-asserted-by":"crossref","DOI":"10.1002\/jbio.201900099","article-title":"Exploration research on the fusion of multimodal spectrum technology to improve performance of rapid diagnosis scheme for thyroid dysfunction","volume":"13","author":"Chen","year":"2020","journal-title":"Journal of biophotonics"},{"issue":"4","key":"10.1016\/j.ipm.2024.103804_bib0038","doi-asserted-by":"crossref","first-page":"757","DOI":"10.1109\/TMI.2020.3021387","article-title":"Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis","volume":"41","author":"Chen","year":"2020","journal-title":"IEEE Transactions on Medical Imaging"},{"issue":"2","key":"10.1016\/j.ipm.2024.103804_bib0018","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1002\/mco2.67","article-title":"UPLC-MS\/MS-based plasma lipidomics reveal a distinctive signature in systemic lupus erythematosus patients","volume":"2","author":"Chen","year":"2021","journal-title":"MedComm"},{"key":"10.1016\/j.ipm.2024.103804_bib0031","doi-asserted-by":"crossref","DOI":"10.1016\/j.saa.2021.120684","article-title":"A novel diagnostic method: FT-IR, Raman and derivative spectroscopy fusion technology for the rapid diagnosis of renal cell carcinoma serum","volume":"269","author":"Chen","year":"2022","journal-title":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy"},{"issue":"7","key":"10.1016\/j.ipm.2024.103804_bib0042","doi-asserted-by":"crossref","first-page":"3342","DOI":"10.1109\/JBHI.2022.3157592","article-title":"Privacy-preserving multi-class support vector machine model on medical diagnosis","volume":"26","author":"Chen","year":"2022","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"issue":"1","key":"10.1016\/j.ipm.2024.103804_bib0001","doi-asserted-by":"crossref","DOI":"10.1016\/j.ipm.2022.103113","article-title":"Information fusion and artificial intelligence for smart healthcare: a bibliometric study","volume":"60","author":"Chen","year":"2023","journal-title":"Information Processing & Management"},{"key":"10.1016\/j.ipm.2024.103804_bib0016","doi-asserted-by":"crossref","DOI":"10.1016\/j.chemolab.2023.104762","article-title":"R-GDORUS technology: Effectively solving the Raman spectral data imbalance in medical diagnosis","volume":"235","author":"Chen","year":"2023","journal-title":"Chemometrics and Intelligent Laboratory Systems"},{"issue":"4","key":"10.1016\/j.ipm.2024.103804_bib0024","doi-asserted-by":"crossref","first-page":"1446","DOI":"10.1161\/ATVBAHA.120.315321","article-title":"Serum metabolomic signatures can predict subclinical atherosclerosis in patients with systemic lupus erythematosus","volume":"41","author":"Coelewij","year":"2021","journal-title":"Arteriosclerosis, thrombosis, and vascular biology"},{"key":"10.1016\/j.ipm.2024.103804_bib0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.pdpdt.2022.102921","article-title":"Paracoccidioidomycosis screening diagnosis by FTIR spectroscopy and multivariate analysis","volume":"39","author":"de Brito","year":"2022","journal-title":"Photodiagnosis and Photodynamic Therapy"},{"key":"10.1016\/j.ipm.2024.103804_bib0007","series-title":"Seminars in Arthritis and Rheumatism","first-page":"463","article-title":"A review of non-immune mediated kidney disease in systemic lupus erythematosus: a hypothetical model of putative risk factors","author":"Falasinnu","year":"2020"},{"key":"10.1016\/j.ipm.2024.103804_bib0028","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2023.107377","article-title":"Multi-omics integration method based on attention deep learning network for biomedical data classification","volume":"231","author":"Gong","year":"2023","journal-title":"Computer Methods and Programs in Biomedicine"},{"key":"10.1016\/j.ipm.2024.103804_bib0008","doi-asserted-by":"crossref","DOI":"10.3389\/fphar.2024.1324540","article-title":"Urinary biomarkers associated with podocyte injury in lupus nephritis","volume":"15","author":"Guo","year":"2024","journal-title":"Frontiers in Pharmacology"},{"key":"10.1016\/j.ipm.2024.103804_bib0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.clim.2023.109330","article-title":"Serum proteome and metabolome uncover novel biomarkers for the assessment of disease activity and diagnosing of systemic lupus erythematosus","volume":"251","author":"He","year":"2023","journal-title":"Clinical Immunology"},{"issue":"12","key":"10.1016\/j.ipm.2024.103804_bib0023","doi-asserted-by":"crossref","first-page":"2089","DOI":"10.1007\/s00011-023-01797-x","article-title":"Application of omics in Sj\u00f6gren's syndrome","volume":"72","author":"He","year":"2023","journal-title":"Inflammation Research"},{"issue":"4","key":"10.1016\/j.ipm.2024.103804_bib0055","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1517\/14728222.2016.1135132","article-title":"Accelerating medicines partnership: Alzheimer's disease (AMP-AD) knowledge portal aids Alzheimer's drug discovery through open data sharing","volume":"20","author":"Hodes","year":"2016","journal-title":"Expert opinion on therapeutic targets"},{"issue":"3","key":"10.1016\/j.ipm.2024.103804_bib0019","doi-asserted-by":"crossref","first-page":"142","DOI":"10.3390\/metabo11030142","article-title":"Lipidomics revealed aberrant metabolism of lipids including FAHFAs in renal tissue in the progression of lupus nephritis in a murine model","volume":"11","author":"Hu","year":"2021","journal-title":"Metabolites"},{"key":"10.1016\/j.ipm.2024.103804_bib0045","series-title":"2020 International conference on computer vision, image and deep learning (CVIDL)","first-page":"210","article-title":"Theory and Implementation of linear regression","author":"Huang","year":"2020"},{"key":"10.1016\/j.ipm.2024.103804_bib0010","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1146\/annurev-med-043021-032611","article-title":"Systemic lupus erythematosus: new diagnostic and therapeutic approaches","volume":"74","author":"Lazar","year":"2023","journal-title":"Annual review of medicine"},{"key":"10.1016\/j.ipm.2024.103804_bib0032","doi-asserted-by":"crossref","DOI":"10.1016\/j.saa.2022.121839","article-title":"Raman spectroscopy and FTIR spectroscopy fusion technology combined with deep learning: A novel cancer prediction method","volume":"285","author":"Leng","year":"2023","journal-title":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy"},{"key":"10.1016\/j.ipm.2024.103804_bib0029","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/j.inffus.2021.10.018","article-title":"Multi-modal bioelectrical signal fusion analysis based on different acquisition devices and scene settings: Overview, challenges, and novel orientation","volume":"79","author":"Li","year":"2022","journal-title":"Information Fusion"},{"key":"10.1016\/j.ipm.2024.103804_bib0034","article-title":"Combined proteomics and single cell RNA-sequencing analysis to identify biomarkers of disease diagnosis and disease exacerbation for systemic lupus erythematosus","volume":"13","author":"Li","year":"2022","journal-title":"Frontiers in Immunology"},{"issue":"9","key":"10.1016\/j.ipm.2024.103804_bib0039","doi-asserted-by":"crossref","first-page":"2587","DOI":"10.1093\/bioinformatics\/btac113","article-title":"HFBSurv: hierarchical multimodal fusion with factorized bilinear models for cancer survival prediction","volume":"38","author":"Li","year":"2022","journal-title":"Bioinformatics"},{"year":"2018","author":"Liu","journal-title":"Efficient low-rank multimodal fusion with modality-specific factors","key":"10.1016\/j.ipm.2024.103804_bib0050"},{"issue":"3","key":"10.1016\/j.ipm.2024.103804_bib0054","doi-asserted-by":"crossref","first-page":"1655","DOI":"10.3390\/ijms25031655","article-title":"TEMINET: A Co-Informative and Trustworthy Multi-Omics Integration Network for Diagnostic Prediction","volume":"25","author":"Luo","year":"2024","journal-title":"International Journal of Molecular Sciences"},{"key":"10.1016\/j.ipm.2024.103804_bib0046","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2020.101985","article-title":"EKNN: Ensemble classifier incorporating connectivity and density into kNN with application to cancer diagnosis","volume":"111","author":"Mahfouz","year":"2021","journal-title":"Artificial Intelligence in Medicine"},{"key":"10.1016\/j.ipm.2024.103804_bib0035","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.106373","article-title":"Differential diagnosis of systemic lupus erythematosus and Sj\u00f6gren's syndrome using machine learning and multi-omics data","volume":"152","author":"Martorell-Marug\u00e1n","year":"2023","journal-title":"Computers in Biology and Medicine"},{"issue":"5","key":"10.1016\/j.ipm.2024.103804_bib0011","doi-asserted-by":"crossref","DOI":"10.1016\/j.autrev.2023.103294","article-title":"Current state and completeness of reporting clinical prediction models using machine learning in systemic lupus erythematosus: A systematic review","volume":"22","author":"Mungu\u00eda-Realpozo","year":"2023","journal-title":"Autoimmunity Reviews"},{"issue":"1","key":"10.1016\/j.ipm.2024.103804_bib0025","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1093\/jamia\/ocy154","article-title":"Automated and flexible identification of complex disease: building a model for systemic lupus erythematosus using noisy labeling","volume":"26","author":"Murray","year":"2019","journal-title":"Journal of the American Medical Informatics Association"},{"key":"10.1016\/j.ipm.2024.103804_bib0051","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/j.neurobiolaging.2018.04.009","article-title":"Classifying Alzheimer's disease with brain imaging and genetic data using a neural network framework","volume":"68","author":"Ning","year":"2018","journal-title":"Neurobiology of aging"},{"issue":"20","key":"10.1016\/j.ipm.2024.103804_bib0012","doi-asserted-by":"crossref","first-page":"7428","DOI":"10.1039\/D0CS01019G","article-title":"Towards the development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning","volume":"49","author":"Ralbovsky","year":"2020","journal-title":"Chemical Society Reviews"},{"issue":"6","key":"10.1016\/j.ipm.2024.103804_bib0003","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1109\/MSP.2017.2738401","article-title":"Deep multimodal learning: A survey on recent advances and trends","volume":"34","author":"Ramachandram","year":"2017","journal-title":"IEEE signal processing magazine"},{"issue":"10","key":"10.1016\/j.ipm.2024.103804_bib0044","doi-asserted-by":"crossref","first-page":"1037","DOI":"10.1093\/ajh\/hpab099","article-title":"Decision tree-based classification for maintaining normal blood pressure throughout early adulthood and middle age: Findings from the coronary artery risk development in young adults (CARDIA) study","volume":"34","author":"Reges","year":"2021","journal-title":"American journal of hypertension"},{"issue":"12","key":"10.1016\/j.ipm.2024.103804_bib0005","doi-asserted-by":"crossref","first-page":"1406","DOI":"10.3390\/electronics10121406","article-title":"The enlightening role of explainable artificial intelligence in chronic wound classification","volume":"10","author":"Sarp","year":"2021","journal-title":"Electronics"},{"issue":"6","key":"10.1016\/j.ipm.2024.103804_bib0009","doi-asserted-by":"crossref","DOI":"10.1016\/j.autrev.2020.102531","article-title":"Worldwide trends in all-cause mortality of auto-immune systemic diseases between 2001 and 2014","volume":"19","author":"Scherlinger","year":"2020","journal-title":"Autoimmunity reviews"},{"key":"10.1016\/j.ipm.2024.103804_bib0043","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2021\/4186666","article-title":"Classification of Alzheimer's disease using Gaussian-based Bayesian parameter optimization for deep convolutional LSTM network","volume":"2021","author":"Sethi","year":"2021","journal-title":"Computational and Mathematical Methods in Medicine"},{"issue":"11","key":"10.1016\/j.ipm.2024.103804_bib0026","doi-asserted-by":"crossref","first-page":"777","DOI":"10.3390\/brainsci10110777","article-title":"Quantitative identification of functional connectivity disturbances in neuropsychiatric lupus based on resting-state fMRI: a robust machine learning approach","volume":"10","author":"Simos","year":"2020","journal-title":"Brain Sciences"},{"issue":"2","key":"10.1016\/j.ipm.2024.103804_bib0002","doi-asserted-by":"crossref","first-page":"bbab569","DOI":"10.1093\/bib\/bbab569","article-title":"Multimodal deep learning for biomedical data fusion: a review","volume":"23","author":"Stahlschmidt","year":"2022","journal-title":"Briefings in Bioinformatics"},{"key":"10.1016\/j.ipm.2024.103804_bib0004","article-title":"Integrating multi-omics data with EHR for precision medicine using advanced artificial intelligence","author":"Tong","year":"2023","journal-title":"IEEE Reviews in Biomedical Engineering"},{"issue":"1","key":"10.1016\/j.ipm.2024.103804_bib0037","doi-asserted-by":"crossref","first-page":"90","DOI":"10.3390\/bioengineering11010090","article-title":"Systemic Lupus Erythematosus: How Machine Learning Can Help Distinguish between Infections and Flares","volume":"11","author":"Usategui","year":"2024","journal-title":"Bioengineering"},{"issue":"1","key":"10.1016\/j.ipm.2024.103804_bib0053","doi-asserted-by":"crossref","first-page":"3445","DOI":"10.1038\/s41467-021-23774-w","article-title":"MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification","volume":"12","author":"Wang","year":"2021","journal-title":"Nature communications"},{"key":"10.1016\/j.ipm.2024.103804_bib0047","series-title":"Proceedings of Grand Challenge and Workshop on Human Multimodal Language (Challenge-HML)","first-page":"11","article-title":"Recognizing emotions in video using multimodal dnn feature fusion","author":"Williams","year":"2018"},{"key":"10.1016\/j.ipm.2024.103804_bib0052","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107676","article-title":"Video sentiment analysis with bimodal information-augmented multi-head attention","volume":"235","author":"Wu","year":"2022","journal-title":"Knowledge-Based Systems"},{"issue":"3","key":"10.1016\/j.ipm.2024.103804_bib0036","doi-asserted-by":"crossref","first-page":"712","DOI":"10.3390\/biomedicines11030712","article-title":"Rapid biomarker-based diagnosis of fibromyalgia syndrome and related rheumatologic disorders by portable FT-IR spectroscopic techniques","volume":"11","author":"Yao","year":"2023","journal-title":"Biomedicines"},{"key":"10.1016\/j.ipm.2024.103804_bib0048","series-title":"Proceedings of the 58th annual meeting of the association for computational linguistics","first-page":"3718","article-title":"Ch-sims: A chinese multimodal sentiment analysis dataset with fine-grained annotation of modality","author":"Yu","year":"2020"},{"key":"10.1016\/j.ipm.2024.103804_bib0006","doi-asserted-by":"crossref","DOI":"10.1016\/j.jaut.2022.102871","article-title":"Lupus nephritis: new progress in diagnosis and treatment","volume":"132","author":"Yu","year":"2022","journal-title":"Journal of Autoimmunity"},{"year":"2017","author":"Zadeh","journal-title":"Tensor fusion network for multimodal sentiment analysis","key":"10.1016\/j.ipm.2024.103804_bib0049"},{"issue":"6","key":"10.1016\/j.ipm.2024.103804_bib0041","doi-asserted-by":"crossref","first-page":"659","DOI":"10.1002\/jrs.2500","article-title":"An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy","volume":"41","author":"Zhang","year":"2010","journal-title":"Journal of Raman spectroscopy"},{"issue":"2","key":"10.1016\/j.ipm.2024.103804_bib0017","doi-asserted-by":"crossref","first-page":"598","DOI":"10.1093\/rheumatology\/keaa126","article-title":"Metabolomic profiling reveals serum L-pyroglutamic acid as a potential diagnostic biomarker for systemic lupus erythematosus","volume":"60","author":"Zhang","year":"2021","journal-title":"Rheumatology"},{"key":"10.1016\/j.ipm.2024.103804_bib0033","doi-asserted-by":"crossref","DOI":"10.1016\/j.clim.2022.109057","article-title":"Integration of metabolomics and lipidomics reveals serum biomarkers for systemic lupus erythematosus with different organ involvement","volume":"241","author":"Zhang","year":"2022","journal-title":"Clinical Immunology"},{"issue":"5","key":"10.1016\/j.ipm.2024.103804_bib0013","doi-asserted-by":"crossref","first-page":"557","DOI":"10.3390\/bios13050557","article-title":"Molecular fingerprint detection using Raman and infrared spectroscopy technologies for cancer detection: a progress review","volume":"13","author":"Zhang","year":"2023","journal-title":"Biosensors"}],"container-title":["Information Processing & Management"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0306457324001638?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0306457324001638?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T19:47:09Z","timestamp":1725997629000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0306457324001638"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11]]},"references-count":56,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2024,11]]}},"alternative-id":["S0306457324001638"],"URL":"https:\/\/doi.org\/10.1016\/j.ipm.2024.103804","relation":{},"ISSN":["0306-4573"],"issn-type":[{"type":"print","value":"0306-4573"}],"subject":[],"published":{"date-parts":[[2024,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"CMACF: Transformer-based cross-modal attention cross-fusion model for systemic lupus erythematosus diagnosis combining Raman spectroscopy, FTIR spectroscopy, and metabolomics","name":"articletitle","label":"Article Title"},{"value":"Information Processing & Management","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ipm.2024.103804","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"103804"}}