{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T19:33:10Z","timestamp":1726255990772},"reference-count":49,"publisher":"Elsevier BV","issue":"5","license":[{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Processing & Management"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1016\/j.ipm.2023.103459","type":"journal-article","created":{"date-parts":[[2023,7,13]],"date-time":"2023-07-13T20:48:42Z","timestamp":1689281322000},"page":"103459","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"title":["RoSAS: Deep semi-supervised anomaly detection with contamination-resilient continuous supervision"],"prefix":"10.1016","volume":"60","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8074-1244","authenticated-orcid":false,"given":"Hongzuo","family":"Xu","sequence":"first","affiliation":[]},{"given":"Yijie","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Guansong","family":"Pang","sequence":"additional","affiliation":[]},{"given":"Songlei","family":"Jian","sequence":"additional","affiliation":[]},{"given":"Ning","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Yongjun","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.ipm.2023.103459_b1","doi-asserted-by":"crossref","first-page":"968","DOI":"10.1111\/coin.12156","article-title":"Isolation-based anomaly detection using nearest-neighbor ensembles","volume":"34","author":"Bandaragoda","year":"2018","journal-title":"Computational Intelligence"},{"key":"10.1016\/j.ipm.2023.103459_b2","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.ins.2022.07.129","article-title":"TiWS-iForest: Isolation forest in weakly supervised and tiny ML scenarios","volume":"610","author":"Barbariol","year":"2022","journal-title":"Information Sciences"},{"key":"10.1016\/j.ipm.2023.103459_b3","doi-asserted-by":"crossref","unstructured":"Carmona, C. U., Aubet, F.-X., Flunkert, V., & Gasthaus, J. (2022). Neural Contextual Anomaly Detection for Time Series. In Proceedings of the thirty-first international joint conference on artificial intelligence (pp. 2843\u20132851).","DOI":"10.24963\/ijcai.2022\/394"},{"issue":"5","key":"10.1016\/j.ipm.2023.103459_b4","doi-asserted-by":"crossref","first-page":"1747","DOI":"10.1109\/TNNLS.2019.2927224","article-title":"A semisupervised recurrent convolutional attention model for human activity recognition","volume":"31","author":"Chen","year":"2019","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.ipm.2023.103459_b5","series-title":"Proceedings of the 2019 SIAM international conference on data mining","first-page":"594","article-title":"Deep anomaly detection on attributed networks","author":"Ding","year":"2019"},{"key":"10.1016\/j.ipm.2023.103459_b6","doi-asserted-by":"crossref","unstructured":"Ding, C., Pang, G., & Shen, C. (2022). Catching both gray and black swans: Open-set supervised anomaly detection. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 7388\u20137398).","DOI":"10.1109\/CVPR52688.2022.00724"},{"key":"10.1016\/j.ipm.2023.103459_b7","series-title":"Proceedings of the web conference","first-page":"2448","article-title":"Few-shot network anomaly detection via cross-network meta-learning","author":"Ding","year":"2021"},{"key":"10.1016\/j.ipm.2023.103459_b8","doi-asserted-by":"crossref","unstructured":"Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., & Yu, P. S. (2020). Enhancing graph neural network-based fraud detectors against camouflaged fraudsters. In Proceedings of the 29th ACM international conference on information & knowledge management (pp. 315\u2013324).","DOI":"10.1145\/3340531.3411903"},{"key":"10.1016\/j.ipm.2023.103459_b9","unstructured":"Golan, I., & El-Yaniv, R. (2018). Deep anomaly detection using geometric transformations. In Proceedings of the 32nd international conference on neural information processing systems (pp. 9758\u20139769)."},{"key":"10.1016\/j.ipm.2023.103459_b10","doi-asserted-by":"crossref","unstructured":"Gong, D., Liu, L., Le, V., Saha, B., Mansour, M. R., Venkatesh, S., & Hengel, A. v. d. (2019). Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In Proceedings of the IEEE\/CVF international conference on computer vision (pp. 1705\u20131714).","DOI":"10.1109\/ICCV.2019.00179"},{"key":"10.1016\/j.ipm.2023.103459_b11","doi-asserted-by":"crossref","unstructured":"Guo, H., Mao, Y., & Zhang, R. (2019). Mixup as locally linear out-of-manifold regularization. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33 (pp. 3714\u20133722).","DOI":"10.1609\/aaai.v33i01.33013714"},{"key":"10.1016\/j.ipm.2023.103459_b12","series-title":"Advances in neural information processing systems: datasets and benchmarks track","article-title":"ADBench: Anomaly detection benchmark","author":"Han","year":"2022"},{"key":"10.1016\/j.ipm.2023.103459_b13","doi-asserted-by":"crossref","unstructured":"Huang, T., Chen, P., & Li, R. (2022). A Semi-Supervised VAE Based Active Anomaly Detection Framework in Multivariate Time Series for Online Systems. In Proceedings of the web conference (pp. 1797\u20131806).","DOI":"10.1145\/3485447.3511984"},{"key":"10.1016\/j.ipm.2023.103459_b14","series-title":"Esad: End-to-end deep semi-supervised anomaly detection","author":"Huang","year":"2020"},{"key":"10.1016\/j.ipm.2023.103459_b15","series-title":"Weakly supervised anomaly detection: A survey","author":"Jiang","year":"2023"},{"issue":"6","key":"10.1016\/j.ipm.2023.103459_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.ipm.2021.102717","article-title":"Semi-supervised emotion recognition in textual conversation via a context-augmented auxiliary training task","volume":"58","author":"Kang","year":"2021","journal-title":"Information Processing & Management"},{"key":"10.1016\/j.ipm.2023.103459_b17","series-title":"Proceedings of the 20th IEEE international conference on data mining","first-page":"1118","article-title":"COPOD: Copula-based outlier detection","author":"Li","year":"2020"},{"key":"10.1016\/j.ipm.2023.103459_b18","doi-asserted-by":"crossref","unstructured":"Liu, S., Johns, E., & Davison, A. J. (2019). End-to-end multi-task learning with attention. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 1871\u20131880).","DOI":"10.1109\/CVPR.2019.00197"},{"key":"10.1016\/j.ipm.2023.103459_b19","series-title":"Proceedings of the 8th IEEE international conference on data mining","first-page":"413","article-title":"Isolation forest","author":"Liu","year":"2008"},{"issue":"4","key":"10.1016\/j.ipm.2023.103459_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.ipm.2023.103383","article-title":"Adaptive multivariate time-series anomaly detection","volume":"60","author":"Lv","year":"2023","journal-title":"Information Processing & Management"},{"issue":"11","key":"10.1016\/j.ipm.2023.103459_b21","article-title":"Visualizing data using t-SNE","volume":"9","author":"Van der Maaten","year":"2008","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.ipm.2023.103459_b22","doi-asserted-by":"crossref","unstructured":"Pang, G., Cao, L., Chen, L., & Liu, H. (2018). Learning representations of ultrahigh-dimensional data for random distance-based outlier detection. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 2041\u20132050).","DOI":"10.1145\/3219819.3220042"},{"key":"10.1016\/j.ipm.2023.103459_b23","series-title":"Explainable deep few-shot anomaly detection with deviation networks","author":"Pang","year":"2021"},{"issue":"2","key":"10.1016\/j.ipm.2023.103459_b24","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3439950","article-title":"Deep learning for anomaly detection: A review","volume":"54","author":"Pang","year":"2021","journal-title":"ACM Computing Surveys"},{"key":"10.1016\/j.ipm.2023.103459_b25","doi-asserted-by":"crossref","unstructured":"Pang, G., Shen, C., & van den Hengel, A. (2019). Deep anomaly detection with deviation networks. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 353\u2013362).","DOI":"10.1145\/3292500.3330871"},{"key":"10.1016\/j.ipm.2023.103459_b26","doi-asserted-by":"crossref","unstructured":"Pang, G., Shen, C., Jin, H., & Hengel, A. v. d. (2023). Deep weakly-supervised anomaly detection. In Proceedings of the 29th ACM SIGKDD international conference on knowledge discovery & data mining.","DOI":"10.1145\/3580305.3599302"},{"key":"10.1016\/j.ipm.2023.103459_b27","doi-asserted-by":"crossref","unstructured":"Pang, G., Yan, C., Shen, C., Hengel, A. v. d., & Bai, X. (2020). Self-trained deep ordinal regression for end-to-end video anomaly detection. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 12173\u201312182).","DOI":"10.1109\/CVPR42600.2020.01219"},{"key":"10.1016\/j.ipm.2023.103459_b28","first-page":"2825","article-title":"Scikit-learn: Machine learning in Python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.ipm.2023.103459_b29","unstructured":"Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S. A., Binder, A., M\u00fcller, E., & Kloft, M. (2018). Deep one-class classification. In Proceedings of the international conference on machine learning (pp. 4393\u20134402)."},{"key":"10.1016\/j.ipm.2023.103459_b30","unstructured":"Ruff, L., Vandermeulen, R. A., G\u00f6rnitz, N., Binder, A., M\u00fcller, E., M\u00fcller, K.-R., & Kloft, M. (2020). Deep Semi-Supervised Anomaly Detection. In International conference on learning representations."},{"key":"10.1016\/j.ipm.2023.103459_b31","unstructured":"Shenkar, T., & Wolf, L. (2022). Anomaly detection for tabular data with internal contrastive learning. In International conference on learning representations."},{"key":"10.1016\/j.ipm.2023.103459_b32","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1023\/B:MACH.0000008084.60811.49","article-title":"Support vector data description","volume":"54","author":"Tax","year":"2004","journal-title":"Machine Learning"},{"key":"10.1016\/j.ipm.2023.103459_b33","doi-asserted-by":"crossref","unstructured":"Tian, B., Su, Q., & Yin, J. (2022). Anomaly Detection by Leveraging Incomplete Anomalous Knowledge with Anomaly-Aware Bidirectional GANs. In Proceedings of the thirty-first international joint conference on artificial intelligence (pp. 2255\u20132261).","DOI":"10.24963\/ijcai.2022\/313"},{"issue":"2","key":"10.1016\/j.ipm.2023.103459_b34","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1007\/s10994-019-05855-6","article-title":"A survey on semi-supervised learning","volume":"109","author":"Van Engelen","year":"2020","journal-title":"Machine Learning"},{"issue":"7","key":"10.1016\/j.ipm.2023.103459_b35","first-page":"3614","article-title":"Multi-task learning for dense prediction tasks: A survey","volume":"44","author":"Vandenhende","year":"2021","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.ipm.2023.103459_b36","series-title":"Proceedings of the 21st IEEE international conference on data mining workshops","first-page":"975","article-title":"Surrogate supervision-based deep weakly-supervised anomaly detection","author":"Wu","year":"2021"},{"key":"10.1016\/j.ipm.2023.103459_b37","series-title":"Proceedings of the 2021 SIAM international conference on data mining","first-page":"127","article-title":"Reconstruction-based anomaly detection with completely random forest","author":"Xu","year":"2021"},{"key":"10.1016\/j.ipm.2023.103459_b38","first-page":"1","article-title":"Deep isolation forest for anomaly detection","author":"Xu","year":"2023","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.ipm.2023.103459_b39","doi-asserted-by":"crossref","unstructured":"Xu, H., Wang, Y., Jian, S., Huang, Z., Wang, Y., Liu, N., & Li, F. (2021). Beyond outlier detection: Outlier interpretation by attention-guided triplet deviation network. In Proceedings of the web conference (pp. 1328\u20131339).","DOI":"10.1145\/3442381.3449868"},{"key":"10.1016\/j.ipm.2023.103459_b40","series-title":"Proceedings of the 19th IEEE international conference on data mining","first-page":"1408","article-title":"MIX: A joint learning framework for detecting both clustered and scattered outliers in mixed-type data","author":"Xu","year":"2019"},{"key":"10.1016\/j.ipm.2023.103459_b41","unstructured":"Xu, H., Wang, Y., Wei, J., Jian, S., Li, Y., & Liu, N. (2023). Fascinating Supervisory Signals and Where to Find Them: Deep Anomaly Detection with Scale Learning. In Proceedings of the international conference on machine learning."},{"issue":"5","key":"10.1016\/j.ipm.2023.103459_b42","doi-asserted-by":"crossref","first-page":"1276","DOI":"10.1109\/TMM.2018.2877127","article-title":"Adaptive semi-supervised feature selection for cross-modal retrieval","volume":"21","author":"Yu","year":"2018","journal-title":"IEEE Transactions on Multimedia"},{"key":"10.1016\/j.ipm.2023.103459_b43","unstructured":"Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). mixup: Beyond Empirical Risk Minimization. In International conference on learning representations."},{"key":"10.1016\/j.ipm.2023.103459_b44","doi-asserted-by":"crossref","unstructured":"Zhang, Y.-L., Li, L., Zhou, J., Li, X., Liu, Y., Zhang, Y., & Zhou, Z.-H. (2017). Poster: A pu learning based system for potential malicious url detection. In Proceedings of the ACM SIGSAC conference on computer and communications security (pp. 2599\u20132601).","DOI":"10.1145\/3133956.3138825"},{"key":"10.1016\/j.ipm.2023.103459_b45","doi-asserted-by":"crossref","unstructured":"Zhang, Y.-L., Li, L., Zhou, J., Li, X., & Zhou, Z.-H. (2018). Anomaly detection with partially observed anomalies. In Companion proceedings of the web conference (pp. 639\u2013646).","DOI":"10.1145\/3184558.3186580"},{"key":"10.1016\/j.ipm.2023.103459_b46","doi-asserted-by":"crossref","unstructured":"Zhang, C., Song, D., Chen, Y., Feng, X., Lumezanu, C., Cheng, W., Ni, J., Zong, B., Chen, H., & Chawla, N. V. (2019). A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In Proceedings of the AAAI conference on artificial intelligence (pp. 1409\u20131416).","DOI":"10.1609\/aaai.v33i01.33011409"},{"key":"10.1016\/j.ipm.2023.103459_b47","first-page":"1","article-title":"PyOD: A python toolbox for scalable outlier detection","volume":"20","author":"Zhao","year":"2019","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.ipm.2023.103459_b48","series-title":"Proceedings of the 2022 SIAM international conference on data mining","first-page":"262","article-title":"Unseen anomaly detection on networks via multi-hypersphere learning","author":"Zhou","year":"2022"},{"issue":"6","key":"10.1016\/j.ipm.2023.103459_b49","doi-asserted-by":"crossref","first-page":"2454","DOI":"10.1109\/TNNLS.2021.3086137","article-title":"Feature encoding with autoencoders for weakly supervised anomaly detection","volume":"33","author":"Zhou","year":"2021","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"}],"container-title":["Information Processing & Management"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0306457323001966?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0306457323001966?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,15]],"date-time":"2024-01-15T11:14:59Z","timestamp":1705317299000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0306457323001966"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9]]},"references-count":49,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2023,9]]}},"alternative-id":["S0306457323001966"],"URL":"https:\/\/doi.org\/10.1016\/j.ipm.2023.103459","relation":{},"ISSN":["0306-4573"],"issn-type":[{"value":"0306-4573","type":"print"}],"subject":[],"published":{"date-parts":[[2023,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"RoSAS: Deep semi-supervised anomaly detection with contamination-resilient continuous supervision","name":"articletitle","label":"Article Title"},{"value":"Information Processing & Management","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ipm.2023.103459","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103459"}}