{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T23:33:44Z","timestamp":1740180824677,"version":"3.37.3"},"reference-count":29,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001863","name":"New Energy and Industrial Technology Development Organization","doi-asserted-by":"publisher","award":["JPNP20004"],"id":[{"id":"10.13039\/501100001863","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Internet of Things"],"published-print":{"date-parts":[[2023,7]]},"DOI":"10.1016\/j.iot.2023.100730","type":"journal-article","created":{"date-parts":[[2023,2,25]],"date-time":"2023-02-25T07:45:54Z","timestamp":1677311154000},"page":"100730","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Mental-state estimation model with time-series environmental data regarding cognitive function"],"prefix":"10.1016","volume":"22","author":[{"given":"Isao","family":"Kurebayashi","sequence":"first","affiliation":[]},{"given":"Koshiro","family":"Maeda","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3312-454X","authenticated-orcid":false,"given":"Nobuyoshi","family":"Komuro","sequence":"additional","affiliation":[]},{"given":"Keita","family":"Hirai","sequence":"additional","affiliation":[]},{"given":"Hiroo","family":"Sekiya","sequence":"additional","affiliation":[]},{"given":"Makoto","family":"Ichikawa","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.iot.2023.100730_b1","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1146\/annurev.psych.56.091103.070229","article-title":"Behavioral theories and the neurophysiology of reward","volume":"57","author":"Schultz","year":"2006","journal-title":"Annu. Rev. Psychol."},{"issue":"5","key":"10.1016\/j.iot.2023.100730_b2","doi-asserted-by":"crossref","DOI":"10.1145\/3186585","article-title":"A critical review of proactive detection of driver stress levels based on multimodal measurements","volume":"51","author":"Rastgoo","year":"2018","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.iot.2023.100730_b3","doi-asserted-by":"crossref","unstructured":"J. Healey, R. Picard, Smart Car: Detecting driver stress, in: Proceedings of the 15th International Conference on Pattern Recognition, 2000, pp. 218\u2013221.","DOI":"10.1109\/ICPR.2000.902898"},{"key":"10.1016\/j.iot.2023.100730_b4","doi-asserted-by":"crossref","first-page":"502","DOI":"10.1109\/TSMCA.2008.918624","article-title":"Toward emotion recognition in car-racing drivers: A biosignal processing approach","volume":"38","author":"Katsis","year":"2000","journal-title":"IEEE Trans. Syst. Man Cybern. A"},{"issue":"6","key":"10.1016\/j.iot.2023.100730_b5","doi-asserted-by":"crossref","first-page":"740","DOI":"10.1016\/j.bspc.2013.06.014","article-title":"A comparative evaluation of neural network classifiers for stress level analysis of automotive drivers using physiological signals","volume":"8","author":"Singh","year":"2013","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.iot.2023.100730_b6","doi-asserted-by":"crossref","unstructured":"M. Urbano, M. Alam, J. Ferreira, J. Fonseca, P. Sim\u00edes, Cooperative driver stress sensing integration with eCall system for improved road safety, in: Proceedings of the IEEE EUROCON 2017-17th International Conference on Smart Technologies, 2017, pp. 883\u2013888.","DOI":"10.1109\/EUROCON.2017.8011238"},{"key":"10.1016\/j.iot.2023.100730_b7","doi-asserted-by":"crossref","first-page":"183025","DOI":"10.1109\/ACCESS.2020.3028182","article-title":"EEG-based neonatal sleep-wake classification using multilayer perceptron neural network","volume":"8","author":"Abbasi","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.iot.2023.100730_b8","first-page":"4619","article-title":"EEG-based neonatal sleep stage classification using ensemble learning","volume":"70","author":"Abbasi","year":"2022","journal-title":"Comput. Mater. Contin."},{"key":"10.1016\/j.iot.2023.100730_b9","series-title":"BIBE 2019; the Third International Conference on Biological Information and Biomedical Engineering","first-page":"1","article-title":"Automatic denoising and artifact removal from neonatal EEG","author":"Abbasi","year":"2019"},{"key":"10.1016\/j.iot.2023.100730_b10","doi-asserted-by":"crossref","DOI":"10.1080\/02699930802204677","article-title":"Measures of emotion: A review","author":"Mauss","year":"2009","journal-title":"Cognition and Emotion"},{"issue":"5","key":"10.1016\/j.iot.2023.100730_b11","doi-asserted-by":"crossref","first-page":"1441","DOI":"10.1109\/JBHI.2021.3073632","article-title":"A hybrid DCNN-SVM model for classifying neonatal sleep and wake states based on facial expressions in video","volume":"25","author":"Awais","year":"2021","journal-title":"IEEE J. Biomed. Health Inf."},{"issue":"5","key":"10.1016\/j.iot.2023.100730_b12","doi-asserted-by":"crossref","first-page":"1645","DOI":"10.1109\/TCBB.2021.3052811","article-title":"EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications","volume":"18","author":"Gu","year":"2021","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinform."},{"key":"10.1016\/j.iot.2023.100730_b13","series-title":"Proc IT Convergence and Security, Lecture Notes in Electrical Engineering","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1007\/978-981-15-9354-3_15","article-title":"Development of wireless sensor nodes to monitor working environment and human mental conditions","volume":"Vol. 712","author":"Komuro","year":"2021"},{"key":"10.1016\/j.iot.2023.100730_b14","doi-asserted-by":"crossref","DOI":"10.1038\/s41598-021-81958-2","article-title":"Predicting individual emotion from perceptionbased non-contact sensor big data","author":"Komuro","year":"2021","journal-title":"Sci. Rep."},{"issue":"1","key":"10.1016\/j.iot.2023.100730_b15","first-page":"131","article-title":"Physiological signals using an RGB camera","volume":"6","year":"2018","journal-title":"ITE Trans. Media Technol. Appl."},{"issue":"1","key":"10.1016\/j.iot.2023.100730_b16","first-page":"44","article-title":"NEC\u2019s emotion analysis solution supports work style reform and health management","volume":"14","author":"Abe","year":"2019","journal-title":"NEC Tech. J."},{"key":"10.1016\/j.iot.2023.100730_b17","unstructured":"The NEC Emotion Solution, http:\/\/jpn.nec.com\/embedded\/products\/emotion\/index.html."},{"issue":"4","key":"10.1016\/j.iot.2023.100730_b18","first-page":"131","article-title":"Unique characteristics of heart rate variability obtained from pulse wave signals during work","volume":"10","author":"Yuda","year":"2019","journal-title":"J. Adv. Inf. Technol."},{"key":"10.1016\/j.iot.2023.100730_b19","doi-asserted-by":"crossref","unstructured":"E. Yuda, T. Tanabiki, S. Iwata, K. Abe, J. Hayano, Detection of daily emotions by wearable biometric sensors, in: Proc. IEEE Global Conference on Life Sciences and Technologies (LifeTech), 2019, pp. 286\u2013287.","DOI":"10.1109\/LifeTech.2019.8883968"},{"key":"10.1016\/j.iot.2023.100730_b20","doi-asserted-by":"crossref","unstructured":"M. Boyle, C. Edwards, S. Green\u00a0berg, The effects of filtered video on awareness and privacy, in: Proc. ACM conference on Computer supported cooperative work (CSCW \u201900) 2000, 2019, pp. 1\u201310.","DOI":"10.1145\/358916.358935"},{"issue":"3","key":"10.1016\/j.iot.2023.100730_b21","doi-asserted-by":"crossref","first-page":"1462","DOI":"10.1109\/TITS.2013.2262098","article-title":"Visual analysis of eye state and head pose for driver alertness monitoring","volume":"14","author":"Oyini","year":"2013","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.iot.2023.100730_b22","series-title":"Proceeding of the International Advance Computing Conference","first-page":"995","article-title":"Drowsy driver detection using representation learning","author":"Dwivedi","year":"2014"},{"key":"10.1016\/j.iot.2023.100730_b23","doi-asserted-by":"crossref","unstructured":"T. Nakamura, A. Maejima, S. Morishima, Driver drowsy estimation from facial expression features computer vision feature investigation using a CG model, in: Proceeding of the International Conference on Computer Vision Theory and Applications, Vol. 2, 2014, pp. 207\u2013214.","DOI":"10.5220\/0004648902070214"},{"issue":"2","key":"10.1016\/j.iot.2023.100730_b24","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1109\/TCE.2018.2844736","article-title":"Emotion based music recommendation system using wearable physiological sensors","volume":"64","author":"Ayata","year":"2018","journal-title":"IEEE Trans. Consum. Electron."},{"issue":"3\u20134","key":"10.1016\/j.iot.2023.100730_b25","doi-asserted-by":"crossref","first-page":"366","DOI":"10.1177\/0301006616688707","article-title":"The impact of stress on odor perception","volume":"46","author":"Hoenen","year":"2017","journal-title":"Perception"},{"key":"10.1016\/j.iot.2023.100730_b26","series-title":"Perception and Emotions: On the Relationships Between Stress and Olfaction","first-page":"98","author":"Bombail","year":"2018"},{"issue":"2","key":"10.1016\/j.iot.2023.100730_b27","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1002\/col.21949","article-title":"The influence of color on student emotion, heart rate, and performance in learning environments","volume":"41","author":"AL-Ayash","year":"2016","journal-title":"Color Res. Appl."},{"issue":"1\u20132","key":"10.1016\/j.iot.2023.100730_b28","first-page":"43","article-title":"Noise and health in the urban environment","volume":"15","author":"Stansfeld","year":"2000","journal-title":"Rev. Environ. Health"},{"issue":"4","key":"10.1016\/j.iot.2023.100730_b29","doi-asserted-by":"crossref","DOI":"10.3390\/su12041665","article-title":"Public environment emotion prediction model using LSTM network","volume":"12","author":"Zhang","year":"2020","journal-title":"Sustainability"}],"container-title":["Internet of Things"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2542660523000537?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2542660523000537?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,15]],"date-time":"2024-10-15T04:38:11Z","timestamp":1728967091000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2542660523000537"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7]]},"references-count":29,"alternative-id":["S2542660523000537"],"URL":"https:\/\/doi.org\/10.1016\/j.iot.2023.100730","relation":{},"ISSN":["2542-6605"],"issn-type":[{"type":"print","value":"2542-6605"}],"subject":[],"published":{"date-parts":[[2023,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Mental-state estimation model with time-series environmental data regarding cognitive function","name":"articletitle","label":"Article Title"},{"value":"Internet of Things","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.iot.2023.100730","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"100730"}}