{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:50:11Z","timestamp":1732042211721},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,19]],"date-time":"2023-12-19T00:00:00Z","timestamp":1702944000000},"content-version":"am","delay-in-days":262,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Internet of Things"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1016\/j.iot.2022.100654","type":"journal-article","created":{"date-parts":[[2022,12,5]],"date-time":"2022-12-05T17:40:59Z","timestamp":1670262059000},"page":"100654","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Outlier detection in non-stationary time series applied to sewer network monitoring"],"prefix":"10.1016","volume":"21","author":[{"given":"Ali","family":"Shakil","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0522-6688","authenticated-orcid":false,"given":"Mohammad Ali","family":"Khalighi","sequence":"additional","affiliation":[]},{"given":"Pierre","family":"Pudlo","sequence":"additional","affiliation":[]},{"given":"Cyril","family":"Leclerc","sequence":"additional","affiliation":[]},{"given":"Dominique","family":"Laplace","sequence":"additional","affiliation":[]},{"given":"Fran\u00e7ois","family":"Hamon","sequence":"additional","affiliation":[]},{"given":"Alexandre","family":"Boudonne","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.iot.2022.100654_b1","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1109\/MC.2018.2381131","article-title":"Deep learning for the Internet of Things","volume":"51","author":"Yao","year":"2018","journal-title":"Computer"},{"issue":"2","key":"10.1016\/j.iot.2022.100654_b2","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1109\/IOTM.0022.2000002","article-title":"Challenges and opportunities for data science and machine learning in IoT systems \u2013 a timely debate: Part 2","volume":"4","author":"Helal","year":"2021","journal-title":"IEEE Int. Things Mag."},{"key":"10.1016\/j.iot.2022.100654_b3","doi-asserted-by":"crossref","first-page":"13960","DOI":"10.1109\/ACCESS.2019.2894819","article-title":"Application of big data and machine learning in smart grid, and associated security concerns: A review","volume":"7","author":"Hossain","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.iot.2022.100654_b4","doi-asserted-by":"crossref","first-page":"35790","DOI":"10.1109\/ACCESS.2021.3062094","article-title":"Internet of Water Things: A remote raw water monitoring and control system","volume":"9","author":"Junior","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.iot.2022.100654_b5","series-title":"Internet of Things a to Z: Technologies and Applications","first-page":"319","author":"Hassan","year":"2018"},{"key":"10.1016\/j.iot.2022.100654_b6","doi-asserted-by":"crossref","first-page":"147647","DOI":"10.1109\/ACCESS.2020.3015655","article-title":"A two-layer water demand prediction system in urban areas based on micro-services and LSTM neural networks","volume":"8","author":"Nasser","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.iot.2022.100654_b7","doi-asserted-by":"crossref","unstructured":"H.M. Mustafa, A. Mustapha, G. Hayder, A. Salisu, Applications of IoT and Artificial Intelligence in Water Quality Monitoring and Prediction: A Review, in: International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 2021, pp. 968\u2013975.","DOI":"10.1109\/ICICT50816.2021.9358675"},{"issue":"4","key":"10.1016\/j.iot.2022.100654_b8","doi-asserted-by":"crossref","first-page":"1861","DOI":"10.1109\/TASE.2020.3022402","article-title":"Automated vision systems for condition assessment of sewer and water pipelines","volume":"18","author":"Rayhana","year":"2021","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"key":"10.1016\/j.iot.2022.100654_b9","doi-asserted-by":"crossref","first-page":"100332","DOI":"10.1109\/ACCESS.2019.2904945","article-title":"Enabling communication networks for water quality monitoring applications: A survey","volume":"7","author":"Olatinwo","year":"2019","journal-title":"IEEE Access"},{"year":"2019","series-title":"Sewer system control using artificial intelligence, hydraulic model, and Internet of Things","author":"Zhang","key":"10.1016\/j.iot.2022.100654_b10"},{"key":"10.1016\/j.iot.2022.100654_b11","doi-asserted-by":"crossref","unstructured":"N.N. Kasat, P.D. Gawande, A.D. Gawande, Smart City Solutions On Drainage, Unused Well And Garbage Alerting System For Human Safety, in: International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-19), Nagpur, India, 2019, pp. 1\u20136.","DOI":"10.1109\/ICETET-SIP-1946815.2019.9092282"},{"issue":"3","key":"10.1016\/j.iot.2022.100654_b12","doi-asserted-by":"crossref","first-page":"32055","DOI":"10.1088\/1757-899X\/928\/3\/032055","article-title":"An overview of periodic wireless sensor networks to the internet of things","volume":"928","author":"Al-Qurabat","year":"2020","journal-title":"IOP Conf. Series: Mater. Sci. Eng."},{"key":"10.1016\/j.iot.2022.100654_b13","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1504\/IJCAT.2022.10050317","article-title":"Important extrema points extraction-based data aggregation approach for elongating the WSN lifetime","volume":"68","author":"Finjan","year":"2022","journal-title":"Int. J. Comput. Appl. Technol."},{"issue":"7","key":"10.1016\/j.iot.2022.100654_b14","doi-asserted-by":"crossref","first-page":"6481","DOI":"10.1109\/JIOT.2019.2958185","article-title":"Anomaly detection for IoT time-series data: A survey","volume":"7","author":"Cook","year":"2020","journal-title":"IEEE Internet Things J."},{"issue":"3","key":"10.1016\/j.iot.2022.100654_b15","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1109\/MCE.2016.2556879","article-title":"Everything you wanted to know about smart cities: The Internet of Things is the backbone","volume":"5","author":"Mohanty","year":"2016","journal-title":"IEEE Consum. Electron. Mag."},{"key":"10.1016\/j.iot.2022.100654_b16","doi-asserted-by":"crossref","unstructured":"M.A. Pradhan, S. Patankar, A. Shinde, V. Shivarkar, P. Phadatare, IoT for smart city: Improvising smart environment, in: International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 2017, pp. 2003\u20132006.","DOI":"10.1109\/ICECDS.2017.8389800"},{"issue":"2","key":"10.1016\/j.iot.2022.100654_b17","doi-asserted-by":"crossref","first-page":"855","DOI":"10.1109\/COMST.2017.2652320","article-title":"Low Power Wide Area networks: An overview","volume":"19","author":"Raza","year":"2017","journal-title":"IEEE Commun. Surv. Tutor."},{"issue":"5","key":"10.1016\/j.iot.2022.100654_b18","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1109\/MWC.2016.7721743","article-title":"Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios","volume":"23","author":"Centenaro","year":"2016","journal-title":"IEEE Wirel. Commun."},{"year":"2020","series-title":"Anomaly detection in univariate time-series: A survey on the state-of-the-art","author":"Braei","key":"10.1016\/j.iot.2022.100654_b19"},{"issue":"3","key":"10.1016\/j.iot.2022.100654_b20","doi-asserted-by":"crossref","DOI":"10.1145\/3444690","article-title":"A review on outlier\/anomaly detection in time series data","volume":"54","author":"Bl\u00e1zquez-Garc\u00eda","year":"2021","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.iot.2022.100654_b21","series-title":"Two-Dimensional Digital Signal Processing II","first-page":"161","article-title":"Median filtering: Statistical properties","author":"Justusson","year":"1981"},{"year":"2008","series-title":"Forecasting with Exponential Smoothing. the State Space Approach","author":"Hyndman","key":"10.1016\/j.iot.2022.100654_b22"},{"key":"10.1016\/j.iot.2022.100654_b23","article-title":"Adaptive threshold for anomaly detection using time series segmentation","author":"Dani","year":"2015","journal-title":"ICONIP"},{"key":"10.1016\/j.iot.2022.100654_b24","series-title":"Time Series Analysis: Univariate and Multivariate Methods","first-page":"33","author":"Wei","year":"2006"},{"year":"2017","series-title":"Automatic anomaly detection in the cloud via statistical learning","author":"Hochenbaum","key":"10.1016\/j.iot.2022.100654_b25"},{"key":"10.1016\/j.iot.2022.100654_b26","doi-asserted-by":"crossref","unstructured":"J. Ma, S. Perkins, Time-series novelty detection using one-class support vector machines, in: Proceedings of the International Joint Conference on Neural Networks, Portland, Oregon, USA, Vol. 3, 2003, pp. 1741\u20131745.","DOI":"10.1109\/IJCNN.2003.1223670"},{"key":"10.1016\/j.iot.2022.100654_b27","doi-asserted-by":"crossref","unstructured":"Z. Ferdousi, A. Maeda, Unsupervised Outlier Detection in Time Series Data, in: 22nd International Conference on Data Engineering Workshops (ICDEW), Atlenta, GA, USA, 2006, p. 121.","DOI":"10.1109\/ICDEW.2006.157"},{"key":"10.1016\/j.iot.2022.100654_b28","doi-asserted-by":"crossref","unstructured":"K. Peker, Subsequence time series (STS) clustering techniques for meaningful pattern discovery, in: International Conference on Integration of Knowledge Intensive Multi-Agent Systems, Waltham, MA, USA, 2005, pp. 360\u2013365.","DOI":"10.1109\/KIMAS.2005.1427109"},{"key":"10.1016\/j.iot.2022.100654_b29","doi-asserted-by":"crossref","unstructured":"O.I. Provotar, Y.M. Linder, M.M. Veres, Unsupervised Anomaly Detection in Time Series Using LSTM-Based Autoencoders, in: 2019 IEEE International Conference on Advanced Trends in Information Theory (ATIT), Kyiv, Ukraine, 2019, pp. 513\u2013517.","DOI":"10.1109\/ATIT49449.2019.9030505"},{"key":"10.1016\/j.iot.2022.100654_b30","series-title":"The Elements of Statistical Learning","first-page":"48","author":"Hastie","year":"2001"},{"issue":"3","key":"10.1016\/j.iot.2022.100654_b31","first-page":"60","article-title":"Confidence analysis of standard deviational ellipse and its extension into higher dimensional euclidean space","volume":"10","author":"Wang","year":"2015","journal-title":"PLoS ONE"},{"year":"2006","series-title":"Computational Complexity: A Modern Approach","author":"Arora","key":"10.1016\/j.iot.2022.100654_b32"},{"key":"10.1016\/j.iot.2022.100654_b33","doi-asserted-by":"crossref","unstructured":"J. Ma, S. Perkins, Time-series novelty detection using one-class support vector machines, in: International Joint Conference on Neural Networks, Vol. 3, 2003, pp. 1741\u20131745.","DOI":"10.1109\/IJCNN.2003.1223670"}],"container-title":["Internet of Things"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2542660522001354?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2542660522001354?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,9]],"date-time":"2024-10-09T23:13:01Z","timestamp":1728515581000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2542660522001354"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":33,"alternative-id":["S2542660522001354"],"URL":"https:\/\/doi.org\/10.1016\/j.iot.2022.100654","relation":{},"ISSN":["2542-6605"],"issn-type":[{"type":"print","value":"2542-6605"}],"subject":[],"published":{"date-parts":[[2023,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Outlier detection in non-stationary time series applied to sewer network monitoring","name":"articletitle","label":"Article Title"},{"value":"Internet of Things","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.iot.2022.100654","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"100654"}}