{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,23]],"date-time":"2024-11-23T06:04:02Z","timestamp":1732341842822,"version":"3.28.0"},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62163016","62376199","62376198","62076182","62006172"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012165","name":"Key Technologies Research and Development Program","doi-asserted-by":"publisher","award":["2022YFB3104700"],"id":[{"id":"10.13039\/501100012165","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004479","name":"Jiangxi Provincial Natural Science Foundation","doi-asserted-by":"publisher","award":["20212ACB202001"],"id":[{"id":"10.13039\/501100004479","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2025,2]]},"DOI":"10.1016\/j.ins.2024.121644","type":"journal-article","created":{"date-parts":[[2024,11,15]],"date-time":"2024-11-15T17:59:07Z","timestamp":1731693547000},"page":"121644","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Adaptive granular data compression and interval granulation for efficient classification"],"prefix":"10.1016","volume":"691","author":[{"ORCID":"http:\/\/orcid.org\/0009-0000-6846-6550","authenticated-orcid":false,"given":"Kecan","family":"Cai","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9781-5078","authenticated-orcid":false,"given":"Hongyun","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Miao","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6588-1468","authenticated-orcid":false,"given":"Duoqian","family":"Miao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.ins.2024.121644_br0010","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1145\/3065386","article-title":"Imagenet classification with deep convolutional neural networks","volume":"60","author":"Krizhevsky","year":"2017","journal-title":"Commun. ACM"},{"key":"10.1016\/j.ins.2024.121644_br0020","article-title":"Occlusion-aware transformer with second-order attention for person re-identification","author":"Li","year":"2024","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2024.121644_br0030","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2024.120576","article-title":"Piaenet: pyramid integration and attention enhanced network for object detection","author":"Tang","year":"2024","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121644_br0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2024.110362","article-title":"Multi-granularity cross transformer network for person re-identification","volume":"150","author":"Li","year":"2024","journal-title":"Pattern Recognit."},{"issue":"12","key":"10.1016\/j.ins.2024.121644_br0050","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1145\/3381831","article-title":"Green AI","volume":"63","author":"Schwartz","year":"2020","journal-title":"Commun. ACM"},{"author":"Strubell","key":"10.1016\/j.ins.2024.121644_br0060"},{"issue":"4","key":"10.1016\/j.ins.2024.121644_br0070","doi-asserted-by":"crossref","first-page":"163","DOI":"10.20517\/jsegc.2022.16","article-title":"Towards green machine learning: challenges, opportunities, and developments","volume":"2","author":"Pedrycz","year":"2022","journal-title":"J. Smart Environ. Green Comput."},{"author":"Xu","key":"10.1016\/j.ins.2024.121644_br0080"},{"key":"10.1016\/j.ins.2024.121644_br0090","doi-asserted-by":"crossref","first-page":"1507","DOI":"10.1002\/widm.1507","article-title":"A systematic review of green ai","author":"Verdecchia","year":"2023","journal-title":"Wiley Interdiscip. Rev. Data Min. Knowl. Discov."},{"author":"Howard","key":"10.1016\/j.ins.2024.121644_br0100"},{"key":"10.1016\/j.ins.2024.121644_br0110","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2024.120367","article-title":"Maximum output discrepancy computation for convolutional neural network compression","volume":"665","author":"Mo","year":"2024","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121644_br0120","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2024.120155","article-title":"Multi-objective compression for cnns via evolutionary algorithm","volume":"661","author":"Lian","year":"2024","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121644_br0130","article-title":"Comparing biases for minimal network construction with back-propagation","volume":"1","author":"Hanson","year":"1988","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.ins.2024.121644_br0140","article-title":"Learning both weights and connections for efficient neural network","volume":"28","author":"Han","year":"2015","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.ins.2024.121644_br0150","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1016\/j.ins.2022.07.134","article-title":"Multi-objective pruning of dense neural networks using deep reinforcement learning","volume":"610","author":"Lior","year":"2022","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121644_br0160","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2023.120048","article-title":"Ddep: evolutionary pruning using distilled dataset","volume":"659","author":"Wang","year":"2024","journal-title":"Inf. Sci."},{"author":"Hinton","key":"10.1016\/j.ins.2024.121644_br0170"},{"key":"10.1016\/j.ins.2024.121644_br0180","article-title":"Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results","volume":"30","author":"Tarvainen","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.ins.2024.121644_br0190","first-page":"13292","article-title":"Learning student-friendly teacher networks for knowledge distillation","volume":"34","author":"Park","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.ins.2024.121644_br0200","series-title":"2017 IEEE International Conference on Image Processing (ICIP)","first-page":"3934","article-title":"Deep active learning for image classification","author":"Ranganathan","year":"2017"},{"key":"10.1016\/j.ins.2024.121644_br0210","series-title":"Acm Sigir Forum, vol. 29","first-page":"13","article-title":"A sequential algorithm for training text classifiers: corrigendum and additional data","author":"Lewis","year":"1995"},{"key":"10.1016\/j.ins.2024.121644_br0220","series-title":"2009 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2372","article-title":"Multi-class active learning for image classification","author":"Joshi","year":"2009"},{"key":"10.1016\/j.ins.2024.121644_br0230","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"9368","article-title":"The power of ensembles for active learning in image classification","author":"Beluch","year":"2018"},{"key":"10.1016\/j.ins.2024.121644_br0240","series-title":"Digital Literacy and Socio-Cultural Acceptance of ICT in Developing Countries","first-page":"53","article-title":"Data set reduction to improve computing efficiency and energy consumption in healthcare domain","author":"Dhabe","year":"2021"},{"key":"10.1016\/j.ins.2024.121644_br0250","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.jvcir.2017.11.023","article-title":"On data-driven Saak transform","volume":"50","author":"Kuo","year":"2018","journal-title":"J. Vis. Commun. Image Represent."},{"key":"10.1016\/j.ins.2024.121644_br0260","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1016\/j.jvcir.2019.03.010","article-title":"Interpretable convolutional neural networks via feedforward design","volume":"60","author":"Kuo","year":"2019","journal-title":"J. Vis. Commun. Image Represent."},{"key":"10.1016\/j.ins.2024.121644_br0270","first-page":"18490","article-title":"Deepspeed data efficiency: improving deep learning model quality and training efficiency via efficient data sampling and routing","volume":"38","author":"Li","year":"2024","journal-title":"Proc. AAAI Conf. Artif. Intell."},{"issue":"1","key":"10.1016\/j.ins.2024.121644_br0280","article-title":"On supervised feature selection from high dimensional feature spaces","volume":"11","author":"Yang","year":"2022","journal-title":"APSIPA Trans. Signal Inf. Proc."},{"issue":"1\u20132","key":"10.1016\/j.ins.2024.121644_br0290","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/S0004-3702(97)00043-X","article-title":"Wrappers for feature subset selection","volume":"97","author":"Kohavi","year":"1997","journal-title":"Artif. Intell."},{"key":"10.1016\/j.ins.2024.121644_br0300","series-title":"Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining","first-page":"785","article-title":"Xgboost: a scalable tree boosting system","author":"Chen","year":"2016"},{"key":"10.1016\/j.ins.2024.121644_br0310","doi-asserted-by":"crossref","DOI":"10.1109\/TKDE.2024.3419215","article-title":"Ze-hfs: zentropy-based uncertainty measure for heterogeneous feature selection and knowledge discovery","author":"Yuan","year":"2024","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2024.121644_br0320","article-title":"Feature selection using zentropy-based uncertainty measure","author":"Yuan","year":"2023","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.ins.2024.121644_br0330","series-title":"2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS)","first-page":"23","article-title":"Rough sets turn 40: from information systems to intelligent systems","author":"Skowron","year":"2022"},{"key":"10.1016\/j.ins.2024.121644_br0340","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.ins.2006.06.006","article-title":"Rough sets: some extensions","volume":"177","author":"Pawlak","year":"2007","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121644_br0350","article-title":"Granular data compression and representation","author":"Pedrycz","year":"2022","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"10","key":"10.1016\/j.ins.2024.121644_br0360","doi-asserted-by":"crossref","first-page":"4209","DOI":"10.1016\/j.asoc.2013.06.017","article-title":"Building the fundamentals of granular computing: a principle of justifiable granularity","volume":"13","author":"Pedrycz","year":"2013","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2024.121644_br0370","series-title":"2022 International Conference on ICT for Sustainability (ICT4S)","first-page":"35","article-title":"Data-centric green ai an exploratory empirical study","author":"Verdecchia","year":"2022"},{"key":"10.1016\/j.ins.2024.121644_br0380","series-title":"2018 IEEE International Conference on Big Data (Big Data)","first-page":"2657","article-title":"Toward machine learning on granulated data \u2013 a case of compact autoencoder-based representations of satellite images","author":"Przyborowski","year":"2018"},{"key":"10.1016\/j.ins.2024.121644_br0390","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Shufflenet: an extremely efficient convolutional neural network for mobile devices","author":"Zhang","year":"2018"},{"key":"10.1016\/j.ins.2024.121644_br0400","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.ins.2024.121644_br0410","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"4700","article-title":"Densely connected convolutional networks","author":"Huang","year":"2017"},{"author":"Dosovitskiy","key":"10.1016\/j.ins.2024.121644_br0420"},{"key":"10.1016\/j.ins.2024.121644_br0430","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"10012","article-title":"Swin transformer: hierarchical vision transformer using shifted windows","author":"Liu","year":"2021"},{"author":"Hinton","key":"10.1016\/j.ins.2024.121644_br0440"},{"author":"Cortes","key":"10.1016\/j.ins.2024.121644_br0450"},{"author":"Zhang","key":"10.1016\/j.ins.2024.121644_br0460"},{"key":"10.1016\/j.ins.2024.121644_br0470","series-title":"2004 Conference on Computer Vision and Pattern Recognition Workshop","first-page":"178","article-title":"Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories","author":"Fei-Fei","year":"2004"},{"key":"10.1016\/j.ins.2024.121644_br0480","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","article-title":"Imagenet large scale visual recognition challenge","volume":"115","author":"Russakovsky","year":"2015","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.ins.2024.121644_br0490","series-title":"Advances in Neural Information Processing Systems","article-title":"The stability-efficiency dilemma: investigating sequence length warmup for training gpt models","author":"Li","year":"2022"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524015585?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524015585?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,23]],"date-time":"2024-11-23T02:58:39Z","timestamp":1732330719000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025524015585"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,2]]},"references-count":49,"alternative-id":["S0020025524015585"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2024.121644","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2025,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Adaptive granular data compression and interval granulation for efficient classification","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2024.121644","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"121644"}}