{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,23]],"date-time":"2024-11-23T06:03:56Z","timestamp":1732341836117,"version":"3.28.0"},"reference-count":29,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2025,2]]},"DOI":"10.1016\/j.ins.2024.121641","type":"journal-article","created":{"date-parts":[[2024,11,14]],"date-time":"2024-11-14T10:29:59Z","timestamp":1731580199000},"page":"121641","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Privacy-preserving and communication-efficient stochastic alternating direction method of multipliers for federated learning"],"prefix":"10.1016","volume":"691","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9339-4146","authenticated-orcid":false,"given":"Yi","family":"Zhang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2980-4304","authenticated-orcid":false,"given":"Yunfan","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Fengxia","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0001-6243-9903","authenticated-orcid":false,"given":"Cheng","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zixian","family":"Gong","sequence":"additional","affiliation":[]},{"given":"Zhe","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Qun","family":"Xu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2024.121641_br0010","doi-asserted-by":"crossref","first-page":"342","DOI":"10.1016\/j.ins.2022.12.045","article-title":"Data independent warmup scheme for non-iid federated learning","volume":"623","author":"Arafeh","year":"2023","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121641_br0020","series-title":"NOMS 2024-2024 IEEE Network Operations and Management Symposium","first-page":"1","article-title":"A secure framework in vertical and horizontal federated learning utilizing homomorphic encryption","author":"Bai","year":"2024"},{"key":"10.1016\/j.ins.2024.121641_br0030","first-page":"1","article-title":"Distributed optimization and statistical learning via the alternating direction method of multipliers","volume":"3","author":"Boyd","year":"2011","journal-title":"Found. Trends\u00ae Mach. Learn."},{"key":"10.1016\/j.ins.2024.121641_br0040","doi-asserted-by":"crossref","first-page":"1855","DOI":"10.1109\/TIFS.2023.3255171","article-title":"Privacy-preserving federated learning via functional encryption","volume":"18","author":"Chang","year":"2023","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"key":"10.1016\/j.ins.2024.121641_br0050","series-title":"International Conference on Machine Learning","first-page":"6683","article-title":"From noisy fixed-point iterations to private admm for centralized and federated learning","author":"Cyffers","year":"2023"},{"key":"10.1016\/j.ins.2024.121641_br0060","series-title":"International Conference on Machine Learning","first-page":"5861","article-title":"FedNew: a communication-efficient and privacy-preserving Newton-type method for federated learning","author":"Elgabli","year":"2022"},{"key":"10.1016\/j.ins.2024.121641_br0070","series-title":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","first-page":"1","article-title":"L-FGADMM: layer-wise federated group ADMM for communication efficient decentralized deep learning","author":"Elgabli","year":"2020"},{"key":"10.1016\/j.ins.2024.121641_br0080","doi-asserted-by":"crossref","first-page":"4289","DOI":"10.1109\/JIOT.2023.3302065","article-title":"Secure federated learning with fully homomorphic encryption for IoT communications","volume":"11","author":"Hijazi","year":"2024","journal-title":"IEEE Int. Things J."},{"author":"Hsu","key":"10.1016\/j.ins.2024.121641_br0090"},{"key":"10.1016\/j.ins.2024.121641_br0100","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1109\/JSTSP.2022.3221681","article-title":"Federated learning using three-operator ADMM","volume":"17","author":"Kant","year":"2022","journal-title":"IEEE J. Sel. Top. Signal Process."},{"key":"10.1016\/j.ins.2024.121641_br0110","series-title":"International Conference on Machine Learning","first-page":"5132","article-title":"Scaffold: stochastic controlled averaging for federated learning","author":"Karimireddy","year":"2020"},{"key":"10.1016\/j.ins.2024.121641_br0120","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2023.119830","article-title":"Secure and efficient multi-key aggregation for federated learning","volume":"654","author":"Li","year":"2024","journal-title":"Inf. Sci."},{"author":"Li","key":"10.1016\/j.ins.2024.121641_br0130"},{"key":"10.1016\/j.ins.2024.121641_br0140","doi-asserted-by":"crossref","first-page":"4574","DOI":"10.1109\/TIFS.2021.3108434","article-title":"Privacy-enhanced federated learning against poisoning adversaries","volume":"16","author":"Liu","year":"2021","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"key":"10.1016\/j.ins.2024.121641_br0150","series-title":"Artificial Intelligence and Statistics","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","author":"McMahan","year":"2017"},{"author":"Ouyang","key":"10.1016\/j.ins.2024.121641_br0160"},{"key":"10.1016\/j.ins.2024.121641_br0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2024.120377","article-title":"BPFL: blockchain-based privacy-preserving federated learning against poisoning attack","volume":"665","author":"Ren","year":"2024","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121641_br0180","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2023.119261","article-title":"Efficient and privacy-preserving online diagnosis scheme based on federated learning in e-healthcare system","volume":"647","author":"Shen","year":"2023","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121641_br0190","doi-asserted-by":"crossref","first-page":"449","DOI":"10.1016\/j.ins.2023.01.130","article-title":"Enhancing privacy preservation and trustworthiness for decentralized federated learning","volume":"628","author":"Wang","year":"2023","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121641_br0200","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"10175","article-title":"Beyond ADMM: a unified client-variance-reduced adaptive federated learning framework","author":"Wang","year":"2023"},{"author":"Xiao","key":"10.1016\/j.ins.2024.121641_br0210"},{"key":"10.1016\/j.ins.2024.121641_br0220","series-title":"2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)","first-page":"443","article-title":"Improving privacy-preserving vertical federated learning by efficient communication with ADMM","author":"Xie","year":"2024"},{"key":"10.1016\/j.ins.2024.121641_br0230","series-title":"IEEE INFOCOM 2024-IEEE Conference on Computer Communications","first-page":"791","article-title":"Efficient and straggler-resistant homomorphic encryption for heterogeneous federated learning","author":"Yan","year":"2024"},{"key":"10.1016\/j.ins.2024.121641_br0240","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2024.120956","article-title":"Clustered federated learning based on nonconvex pairwise fusion","author":"Yu","year":"2024","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121641_br0250","series-title":"2020 USENIX Annual Technical Conference (USENIX ATC 20)","first-page":"493","article-title":"{BatchCrypt}: efficient homomorphic encryption for {Cross-Silo} federated learning","author":"Zhang","year":"2020"},{"key":"10.1016\/j.ins.2024.121641_br0260","series-title":"ICC 2024-IEEE International Conference on Communications","first-page":"2185","article-title":"An efficient and secure privacy-preserving federated learning via lattice-based functional encryption","author":"Zhang","year":"2024"},{"author":"Zhou","key":"10.1016\/j.ins.2024.121641_br0270"},{"key":"10.1016\/j.ins.2024.121641_br0280","doi-asserted-by":"crossref","first-page":"9699","DOI":"10.1109\/TPAMI.2023.3243080","article-title":"Federated learning via inexact ADMM","volume":"45","author":"Zhou","year":"2023","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2024.121641_br0290","doi-asserted-by":"crossref","first-page":"1493","DOI":"10.1109\/TSP.2023.3268845","article-title":"FedGiA: an efficient hybrid algorithm for federated learning","volume":"71","author":"Zhou","year":"2023","journal-title":"IEEE Trans. Signal Process."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002002552401555X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002002552401555X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,23]],"date-time":"2024-11-23T02:58:34Z","timestamp":1732330714000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S002002552401555X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,2]]},"references-count":29,"alternative-id":["S002002552401555X"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2024.121641","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2025,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Privacy-preserving and communication-efficient stochastic alternating direction method of multipliers for federated learning","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2024.121641","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"121641"}}