{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,23]],"date-time":"2024-11-23T06:04:23Z","timestamp":1732341863684,"version":"3.28.0"},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2025,2]]},"DOI":"10.1016\/j.ins.2024.121618","type":"journal-article","created":{"date-parts":[[2024,11,7]],"date-time":"2024-11-07T17:45:25Z","timestamp":1731001525000},"page":"121618","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Hybrid rotation self-supervision and feature space normalization for class incremental learning"],"prefix":"10.1016","volume":"691","author":[{"given":"Wenyi","family":"Feng","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3759-2041","authenticated-orcid":false,"given":"Zhe","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Qian","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Jiayi","family":"Gong","sequence":"additional","affiliation":[]},{"given":"Xinlei","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Zhilin","family":"Fu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2024.121618_br0010","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2001","article-title":"icarl: incremental classifier and representation learning","author":"Rebuffi","year":"2017"},{"issue":"12","key":"10.1016\/j.ins.2024.121618_br0020","doi-asserted-by":"crossref","first-page":"2935","DOI":"10.1109\/TPAMI.2017.2773081","article-title":"Learning without forgetting","volume":"40","author":"Li","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2024.121618_br0030","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.neunet.2020.12.003","article-title":"A comprehensive study of class incremental learning algorithms for visual tasks","volume":"135","author":"Belouadah","year":"2021","journal-title":"Neural Netw."},{"issue":"4","key":"10.1016\/j.ins.2024.121618_br0040","doi-asserted-by":"crossref","first-page":"1848","DOI":"10.1109\/TCSVT.2021.3083978","article-title":"Semantic supplementary network with prior information for multi-label image classification","volume":"32","author":"Wang","year":"2021","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"issue":"12","key":"10.1016\/j.ins.2024.121618_br0050","doi-asserted-by":"crossref","first-page":"5178","DOI":"10.1109\/TNNLS.2020.2964585","article-title":"Entropy and confidence-based undersampling boosting random forests for imbalanced problems","volume":"31","author":"Wang","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ins.2024.121618_br0060","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"466","article-title":"Remind your neural network to prevent catastrophic forgetting","author":"Hayes","year":"2020"},{"key":"10.1016\/j.ins.2024.121618_br0070","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"312","article-title":"Overcoming catastrophic forgetting with unlabeled data in the wild","author":"Lee","year":"2019"},{"key":"10.1016\/j.ins.2024.121618_br0080","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"5871","article-title":"Prototype augmentation and self-supervision for incremental learning","author":"Zhu","year":"2021"},{"key":"10.1016\/j.ins.2024.121618_br0090","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"2209","article-title":"In defense of the learning without forgetting for task incremental learning","author":"Oren","year":"2021"},{"key":"10.1016\/j.ins.2024.121618_br0100","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"233","article-title":"End-to-end incremental learning","author":"Castro","year":"2018"},{"key":"10.1016\/j.ins.2024.121618_br0110","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"86","article-title":"Podnet: pooled outputs distillation for small-tasks incremental learning","author":"Douillard","year":"2020"},{"key":"10.1016\/j.ins.2024.121618_br0120","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"9516","article-title":"Co2l: contrastive continual learning","author":"Cha","year":"2021"},{"key":"10.1016\/j.ins.2024.121618_br0130","series-title":"International Conference on Machine Learning","first-page":"214","article-title":"Wasserstein generative adversarial networks","author":"Arjovsky","year":"2017"},{"key":"10.1016\/j.ins.2024.121618_br0140","first-page":"19667","article-title":"Nvae: a deep hierarchical variational autoencoder","volume":"33","author":"Vahdat","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.ins.2024.121618_br0150","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.neunet.2019.01.012","article-title":"Continual lifelong learning with neural networks: a review","volume":"113","author":"Parisi","year":"2019","journal-title":"Neural Netw."},{"key":"10.1016\/j.ins.2024.121618_br0160","article-title":"Continual learning with deep generative replay","volume":"30","author":"Shin","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.ins.2024.121618_br0170","article-title":"Memory replay gans: learning to generate new categories without forgetting","volume":"31","author":"Wu","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.ins.2024.121618_br0180","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"6619","article-title":"Incremental learning using conditional adversarial networks","author":"Xiang","year":"2019"},{"key":"10.1016\/j.ins.2024.121618_br0190","doi-asserted-by":"crossref","first-page":"4656","DOI":"10.1109\/TNNLS.2022.3223018","article-title":"On representation knowledge distillation for graph neural networks","volume":"35","author":"Joshi","year":"2024","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ins.2024.121618_br0200","first-page":"18661","article-title":"Supervised contrastive learning","volume":"33","author":"Khosla","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.ins.2024.121618_br0210","series-title":"International Conference on Machine Learning","first-page":"1597","article-title":"A simple framework for contrastive learning of visual representations","author":"Chen","year":"2020"},{"key":"10.1016\/j.ins.2024.121618_br0220","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"9729","article-title":"Momentum contrast for unsupervised visual representation learning","author":"He","year":"2020"},{"key":"10.1016\/j.ins.2024.121618_br0230","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1016\/j.neunet.2023.10.039","article-title":"A survey on few-shot class-incremental learning","volume":"169","author":"Tian","year":"2024","journal-title":"Neural Netw."},{"key":"10.1016\/j.ins.2024.121618_br0240","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2024.110506","article-title":"Rebalancing network with knowledge stability for class incremental learning","volume":"153","author":"Song","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.ins.2024.121618_br0250","doi-asserted-by":"crossref","DOI":"10.1016\/j.inffus.2023.102021","article-title":"Multi-view class incremental learning","volume":"102","author":"Li","year":"2024","journal-title":"Inf. Fusion"},{"issue":"13","key":"10.1016\/j.ins.2024.121618_br0260","doi-asserted-by":"crossref","first-page":"3521","DOI":"10.1073\/pnas.1611835114","article-title":"Overcoming catastrophic forgetting in neural networks","volume":"114","author":"Kirkpatrick","year":"2017","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.ins.2024.121618_br0270","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"1320","article-title":"Encoder based lifelong learning","author":"Rannen","year":"2017"},{"key":"10.1016\/j.ins.2024.121618_br0280","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"699","article-title":"More classifiers, less forgetting: a generic multi-classifier paradigm for incremental learning","author":"Liu","year":"2020"},{"key":"10.1016\/j.ins.2024.121618_br0290","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"374","article-title":"Large scale incremental learning","author":"Wu","year":"2019"},{"key":"10.1016\/j.ins.2024.121618_br0300","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"831","article-title":"Learning a unified classifier incrementally via rebalancing","author":"Hou","year":"2019"},{"key":"10.1016\/j.ins.2024.121618_br0310","series-title":"International Conference on Machine Learning","first-page":"5714","article-title":"Self-supervised label augmentation via input transformations","author":"Lee","year":"2020"},{"key":"10.1016\/j.ins.2024.121618_br0320","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"2970","article-title":"Deep representation learning on long-tailed data: a learnable embedding augmentation perspective","author":"Liu","year":"2020"},{"key":"10.1016\/j.ins.2024.121618_br0330","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"1124","article-title":"Striking a balance between stability and plasticity for class-incremental learning","author":"Wu","year":"2021"},{"issue":"11","key":"10.1016\/j.ins.2024.121618_br0340","doi-asserted-by":"crossref","first-page":"4037","DOI":"10.1109\/TPAMI.2020.2992393","article-title":"Self-supervised visual feature learning with deep neural networks: a survey","volume":"43","author":"Jing","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2024.121618_br0350","series-title":"2023 IEEE International Conference on Pervasive Computing and Communications (PerCom)","first-page":"232","article-title":"Investigating enhancements to contrastive predictive coding for human activity recognition","author":"Haresamudram","year":"2023"},{"key":"10.1016\/j.ins.2024.121618_br0360","article-title":"Freezing partial source representations matters for image inpainting under limited data","volume":"133","author":"Zhang","year":"2024","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.ins.2024.121618_br0370","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops","first-page":"3225","article-title":"Contrastive learning for depth prediction","author":"Fan","year":"2023"},{"issue":"6","key":"10.1016\/j.ins.2024.121618_br0380","first-page":"7024","article-title":"Attribute and structure preserving graph contrastive learning","volume":"37","author":"Chen","year":"2023","journal-title":"Proc. AAAI Conf. Artif. Intell."},{"year":"2009","series-title":"Learning Multiple Layers of Features from Tiny Images","author":"Krizhevsky","key":"10.1016\/j.ins.2024.121618_br0390"},{"key":"10.1016\/j.ins.2024.121618_br0400","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"9374","article-title":"Always be dreaming: a new approach for data-free class-incremental learning","author":"Smith","year":"2021"},{"key":"10.1016\/j.ins.2024.121618_br0410","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"5138","article-title":"Learning without memorizing","author":"Dhar","year":"2019"},{"issue":"11","key":"10.1016\/j.ins.2024.121618_br0420","doi-asserted-by":"crossref","first-page":"2624","DOI":"10.1109\/TPAMI.2013.83","article-title":"Distance-based image classification: generalizing to new classes at near-zero cost","volume":"35","author":"Mensink","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2024.121618_br0430","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.ins.2024.121618_br0440","series-title":"International Conference on Machine Learning","article-title":"Adam: a method for stochastic optimization","author":"Kingma","year":"2015"},{"key":"10.1016\/j.ins.2024.121618_br0450","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2024.110440","article-title":"Hyper-feature aggregation and relaxed distillation for class incremental learning","volume":"152","author":"Wu","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.ins.2024.121618_br0460","article-title":"Analogical learning-based few-shot class-incremental learning","author":"Li","year":"2024","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.ins.2024.121618_br0470","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2024.110686","article-title":"Pseudo-set frequency refinement architecture for fine-grained few-shot class-incremental learning","author":"Pan","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.ins.2024.121618_br0480","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109310","article-title":"Knowledge aggregation networks for class incremental learning","volume":"137","author":"Fu","year":"2023","journal-title":"Pattern Recognit."},{"issue":"10","key":"10.1016\/j.ins.2024.121618_br0490","doi-asserted-by":"crossref","first-page":"5921","DOI":"10.1109\/TCSVT.2023.3262739","article-title":"Semantic knowledge guided class-incremental learning","volume":"33","author":"Wang","year":"2023","journal-title":"IEEE Trans. Circuits Syst. Video Technol."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524015329?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524015329?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,23]],"date-time":"2024-11-23T02:58:09Z","timestamp":1732330689000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025524015329"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,2]]},"references-count":49,"alternative-id":["S0020025524015329"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2024.121618","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2025,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Hybrid rotation self-supervision and feature space normalization for class incremental learning","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2024.121618","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"121618"}}