{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,23]],"date-time":"2024-11-23T06:04:20Z","timestamp":1732341860573,"version":"3.28.0"},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,10,28]],"date-time":"2024-10-28T00:00:00Z","timestamp":1730073600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2022YFB3904303"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62076019","62103414"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2025,2]]},"DOI":"10.1016\/j.ins.2024.121604","type":"journal-article","created":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T10:43:01Z","timestamp":1730457781000},"page":"121604","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["An adaptive network with consecutive and intertwined slices for real-world time-series forecasting"],"prefix":"10.1016","volume":"691","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6520-1418","authenticated-orcid":false,"given":"Li","family":"Shen","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5438-4711","authenticated-orcid":false,"given":"Yuning","family":"Wei","sequence":"additional","affiliation":[]},{"given":"Yangzhu","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Hongguang","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2024.121604_b0005","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.ins.2022.12.091","article-title":"Multi-indicator water quality prediction with attention-assisted bidirectional lstm and encoder-decoder","volume":"625","author":"Bi","year":"2023","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121604_b0010","unstructured":"A. Bochkovskiy, C.-Y. Wang, H.-Y. M. Liao, YOLOv4: Optimal speed and accuracy of object detection, arXiv preprint arXiv:2004.10934 (2020)."},{"year":"2015","series-title":"Time Series Analysis: Forecasting and Control","author":"Box","key":"10.1016\/j.ins.2024.121604_b0015"},{"issue":"2","key":"10.1016\/j.ins.2024.121604_b0020","first-page":"158","article-title":"Some recent advances in forecasting and control","volume":"23","author":"Box","year":"1974","journal-title":"J. R. Statist. Soc.: Series C (applied Statistics)"},{"key":"10.1016\/j.ins.2024.121604_b0025","doi-asserted-by":"crossref","unstructured":"C. Challu, K. G. Olivares, B. N. Oreshkin, F. Garza, M. Mergenthaler-Canseco, A. Dubrawski, N-HiTS: Neural hierarchical interpolation for time series forecasting, 2023. doi: 10.1609\/aaai.v37i6.25854.","DOI":"10.1609\/aaai.v37i6.25854"},{"key":"10.1016\/j.ins.2024.121604_b0030","series-title":"Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence","first-page":"1994","article-title":"Triformer: Triangular, variable-specific attentions for long sequence multivariate time series forecasting","author":"Cirstea","year":"2022"},{"issue":"3\/4","key":"10.1016\/j.ins.2024.121604_b0035","first-page":"225","article-title":"Un nuovo test non parametrico per il confronto tra due gruppi campionari, Giorn","volume":"27","author":"Cucconi","year":"1968","journal-title":"Econom, Giornale Degli Economisti e Annali Di Economia"},{"key":"10.1016\/j.ins.2024.121604_b0040","series-title":"Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining","first-page":"448","article-title":"Localised adaptive spatial-temporal graph neural network","author":"Duan","year":"2023"},{"key":"10.1016\/j.ins.2024.121604_b0045","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1002\/wics.1351","article-title":"Robust estimation of (partial) autocorrelation","volume":"7","author":"D\u00fcrre","year":"2015","journal-title":"Wiley Interdiscip. Rev.: Comput. Statist."},{"key":"10.1016\/j.ins.2024.121604_b0050","doi-asserted-by":"crossref","unstructured":"W. Fan, P. Wang, D. Wang, D. Wang, Y. Zhou, Y. Fu, Dish-TS: A general paradigm for alleviating distribution shift in time series forecasting, in: Thirty-Seventh AAAI Conference on Artificial Intelligence, 2023, pp. 7522-7529. doi: 10.1609\/aaai.v37i6.25914.","DOI":"10.1609\/aaai.v37i6.25914"},{"year":"2016","series-title":"Deep Learning","author":"Goodfellow","key":"10.1016\/j.ins.2024.121604_b0055"},{"key":"10.1016\/j.ins.2024.121604_b0060","series-title":"Proceedings of the 40th International Conference on Machine Learning","first-page":"12616","article-title":"Theoretical guarantees of learning ensembling strategies with applications to time series forecasting","author":"Hasson","year":"2023"},{"issue":"1","key":"10.1016\/j.ins.2024.121604_b0065","doi-asserted-by":"crossref","first-page":"1","DOI":"10.2307\/2953682","article-title":"Postwar u.s. business cycles: An empirical investigation","volume":"29","author":"Hodrick","year":"1997","journal-title":"J. Money, Credit and Bank."},{"issue":"2","key":"10.1016\/j.ins.2024.121604_b0070","doi-asserted-by":"crossref","first-page":"1642","DOI":"10.1109\/JIOT.2022.3209523","article-title":"Adaptive spatiotemporal transformer graph network for traffic flow forecasting by iot loop detectors","volume":"10","author":"Huang","year":"2023","journal-title":"IEEE Internet of Things J."},{"key":"10.1016\/j.ins.2024.121604_b0075","series-title":"Proceedings of the 32nd International Conference on Machine Learning","first-page":"448","article-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift","author":"Ioffe","year":"2015"},{"key":"10.1016\/j.ins.2024.121604_b0080","unstructured":"T. Kim, J. Kim, Y. Tae, C. Park, J.-H. Choi, J. Choo, Reversible instance normalization for accurate time-series forecasting against distribution shift, in: International Conference on Learning Representations, 2022. URL https:\/\/openreview.net\/forum?id=cGDAkQo1C0p."},{"key":"10.1016\/j.ins.2024.121604_b0085","series-title":"The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval","first-page":"95","article-title":"Modeling long- and short-term temporal patterns with deep neural networks","author":"Lai","year":"2018"},{"key":"10.1016\/j.ins.2024.121604_b0090","unstructured":"K.-H. Lai, D. Zha, J. Xu, Y. Zhao, G. Wang, X. Hu, Revisiting time series outlier detection: Definitions and benchmarks, in: Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, Vol. 1, Curran, 2021."},{"key":"10.1016\/j.ins.2024.121604_b0095","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.ins.2022.12.099","article-title":"A multiple long short-term model for product sales forecasting based on stage future vision with prior knowledge","volume":"625","author":"Li","year":"2023","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121604_b0100","doi-asserted-by":"crossref","unstructured":"Y. Liang, Y. Xia, S. Ke, Y. Wang, Q. Wen, J. Zhang, Y. Zheng, R. Zimmermann. Airformer: Predicting nationwide air quality in china with transformers, in: Thirty-Seventh AAAI Conference on Artificial Intelligence, 2023, pp.14329-14337. doi: 10.1609\/aaai.v37i12.26676.","DOI":"10.1609\/aaai.v37i12.26676"},{"key":"10.1016\/j.ins.2024.121604_b0105","unstructured":"M. Liu, A. Zeng, M. Chen, Z. Xu, Q. Lai, L. Ma, Q. Xu, SCINet: Time series modeling and forecasting with sample convolution and interaction, in: Advances in Neural Information Processing Systems, 2022. URL https:\/\/openreview.net\/forum?id=AyajSjTAzmg."},{"key":"10.1016\/j.ins.2024.121604_b0110","unstructured":"S. Liu, H. Yu, C. Liao, J. Li, W. Lin, A.X. Liu, S. Dustdar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting, in: International Conference on Learning Representations, 2020. URL: https:\/\/openreview.net\/forum?id=0EXmFzUn5I."},{"key":"10.1016\/j.ins.2024.121604_b0115","series-title":"Forecasting with Artificial Intelligence: Theory and Applications","first-page":"163","article-title":"Handling concept drift in global time series forecasting g","author":"Liu","year":"2023"},{"key":"10.1016\/j.ins.2024.121604_b0120","unstructured":"J. Lu, X. Han, S. Yang, ARM: Refining multivariate forecasting with adaptive temporal-contextual learning, in: The Twelfth International Conference on Learning Representations, 2024. URL https:\/\/openreview.net\/forum?id=JWpwDdVbaM."},{"issue":"4","key":"10.1016\/j.ins.2024.121604_b0125","doi-asserted-by":"crossref","first-page":"802","DOI":"10.1016\/j.ijforecast.2018.06.001","article-title":"The M4 competition: Results, findings, conclusion and way forward","volume":"34","author":"Makridakis","year":"2018","journal-title":"Int. J. Forecast."},{"key":"10.1016\/j.ins.2024.121604_b0130","unstructured":"G. Mateus, C. Soares, J. Leit\u00e3o, A. Rodrigues, EAMDrift: An interpretable self retrain model for time series, arXiv preprint arXiv: 2305.19837 (2023)."},{"key":"10.1016\/j.ins.2024.121604_b0135","doi-asserted-by":"crossref","unstructured":"T. Nakamura, M. Imamura, R. Mercer, E. Keogh, MERLIN: Parameter-free discovery of arbitrary length anomalies in massive time series archives, in: 2020 IEEE International Conference on Data Mining (ICDM), 2020: pp. 1190\u20131195. doi: 10.1109\/ICDM50108.2020.00147.","DOI":"10.1109\/ICDM50108.2020.00147"},{"key":"10.1016\/j.ins.2024.121604_b0140","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1016\/j.neucom.2022.08.032","article-title":"Mfrfnn: Multi-functional recurrent fuzzy neural network for chaotic time series prediction","volume":"507","author":"Nasiri","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2024.121604_b0145","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2023.110867","article-title":"Multi-step-ahead stock price prediction using recurrent fuzzy neural network and variational mode decomposition","volume":"148","author":"Nasiri","year":"2023","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2024.121604_b0150","unstructured":"Y. Nie, N. H. Nguyen, P. Sinthong, J. Kalagnanam, A time series is worth 64 words: Long-term forecasting with transformers, in: The Eleventh International Conference on Learning Representations, 2023. URL https:\/\/openreview.net\/forum?id=Jbdc0vTOcol."},{"key":"10.1016\/j.ins.2024.121604_b0155","doi-asserted-by":"crossref","unstructured":"H. Niu, G. Habault, R. Legaspi, C. Meng, D. Cao, S. Wada, C. Ono, Y. Liu, Time-delayed multivariate time series predictions. doi: 10.1137\/1.9781611977653.ch37.","DOI":"10.1137\/1.9781611977653.ch37"},{"key":"10.1016\/j.ins.2024.121604_b0160","doi-asserted-by":"crossref","unstructured":"H. Niu, C. Meng, D. Cao, G. Habault, R. Legaspi, S. Wada, C. Ono, Y. Liu, Mu2rest: Multi-resolution recursive spatio-temporal transformer for long-term prediction, in: Advances in Knowledge Discovery and Data Mining, 2022, pp. 68\u201380.","DOI":"10.1007\/978-3-031-05933-9_6"},{"key":"10.1016\/j.ins.2024.121604_b0165","unstructured":"B. N. Oreshkin, D. Carpov, N. Chapados, Y. Bengio, N-BEATS: Neural basis expansion analysis for interpretable time series forecasting, in: International Conference on Learning Representations, 2020. URL https:\/\/openreview.net\/forum?id=r1ecqn4YwB."},{"key":"10.1016\/j.ins.2024.121604_b0170","unstructured":"M. A. Shabani, A. H. Abdi, L. Meng, T. Sylvain, Scaleformer: Iterative multi-scale refining transformers for time series forecasting, in: The Eleventh International Conference on Learning Representations, 2023. URL https:\/\/openreview.net\/forum?id=sCrnllCtjoE."},{"key":"10.1016\/j.ins.2024.121604_b0180","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1109\/TNNLS.2015.2411629","article-title":"A bias and variance analysis for multistep-ahead time series forecasting","volume":"27","author":"Taieb","year":"2016","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"key":"10.1016\/j.ins.2024.121604_b0190","unstructured":"H. Wang, J. Peng, F. Huang, J. Wang, J. Chen, Y. Xiao, MICN: Multi-scale local and global context modeling for long-term series forecasting, in: The Eleventh International Conference on Learning Representations, 2023. URL https:\/\/openreview.net\/forum?id=zt53IDUR1U."},{"key":"10.1016\/j.ins.2024.121604_b0195","doi-asserted-by":"crossref","unstructured":"Q. Wen, K. He, L. Sun, Y. Zhang, M. Ke, H. Xu, RobustPeriod: Robust time-frequency mining for multiple periodicity detection, in: Proceedings of the 2021 International Conference on Management of Data, SIGMOD\u201921, Association for Computing Machinery, New York, NY, USA, 2021, pp. 2328\u20132337. doi:10.1145\/3448016.3452779.","DOI":"10.1145\/3448016.3452779"},{"key":"10.1016\/j.ins.2024.121604_b0200","series-title":"Advances in Neural Information Processing Systems","first-page":"22419","article-title":"Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting","author":"Wu","year":"2021"},{"key":"10.1016\/j.ins.2024.121604_b0205","unstructured":"Z. Xu, A. Zeng, Q. Xu, FITS: Modeling time series with 10k parameters, in: The Twelfth International Conference on Learning Representations, 2024. URL https:\/\/openreview.net\/forum?id=bWcnvZ3qMb."},{"key":"10.1016\/j.ins.2024.121604_b0210","doi-asserted-by":"crossref","first-page":"560","DOI":"10.1016\/j.ins.2022.11.145","article-title":"Innovative ensemble system based on mixed frequency modeling for wind speed point and interval forecasting","volume":"622","author":"Yang","year":"2023","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121604_b0215","doi-asserted-by":"crossref","unstructured":"Z. Yue, Y. Wang, J. Duan, T. Yang, C. Huang, Y. Tong, B. Xu, TS2Vec: Towards universal representation of time series, in: The Thirty-Sixth AAAI Conference on Artificial Intelligence, 2022. doi: 10.1609\/aaai.v36i8.20881.","DOI":"10.1609\/aaai.v36i8.20881"},{"key":"10.1016\/j.ins.2024.121604_b0220","doi-asserted-by":"crossref","unstructured":"A. Zeng, M. Chen, L. Zhang, Q. Xu, Are transformers effective for time series forecasting?, in: The Thirty-Seventh AAAI Conference on Artificial Intelligence, 2023. doi:10.1609\/aaai.v37i9.26317.","DOI":"10.1609\/aaai.v37i9.26317"},{"key":"10.1016\/j.ins.2024.121604_b0225","doi-asserted-by":"crossref","unstructured":"M. Zhang, Y. Li, F. Sun, D. Guo, P. Hui, Adaptive spatio-temporal convolutional network for traffic prediction, in: 2021 IEEE International Conference on Data Mining (ICDM), 2021, pp. 1475\u20131480. doi:10.1109\/ICDM51629.2021.00191.","DOI":"10.1109\/ICDM51629.2021.00191"},{"key":"10.1016\/j.ins.2024.121604_b0230","unstructured":"Y. Zhang, J. Yan, Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting, in: The Eleventh International Conference on Learning Representations, 2023. URL https:\/\/openreview.net\/forum?id=vSVLM2j9eie."},{"key":"10.1016\/j.ins.2024.121604_b0235","doi-asserted-by":"crossref","unstructured":"H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, W. Zhang, Informer: Beyond efficient transformer for long sequence time-series forecasting, in: The Thirty-Fifth AAAI Conference on Artificial Intelligence, 2021, pp. 11106\u201311115. doi:10.1609\/aaai.v35i12.17325.","DOI":"10.1609\/aaai.v35i12.17325"},{"key":"10.1016\/j.ins.2024.121604_b0240","unstructured":"T. Zhou, Z. Ma, X. Wang, Q. Wen, L. Sun, T. Yao, W. Yin, R. Jin, FiLM: Frequency improved legendre memory model for long-term time series forecasting, in: Advances in Neural Information Processing Systems, 2022. URL https:\/\/openreview.net\/forum?id=zTQdHSQUQWc."},{"key":"10.1016\/j.ins.2024.121604_b0245","series-title":"Proceedings of the 39th International Conference on Machine Learning","first-page":"27268","article-title":"FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting","author":"Zhou","year":"2022"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524015184?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524015184?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,23]],"date-time":"2024-11-23T02:57:55Z","timestamp":1732330675000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025524015184"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,2]]},"references-count":47,"alternative-id":["S0020025524015184"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2024.121604","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2025,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An adaptive network with consecutive and intertwined slices for real-world time-series forecasting","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2024.121604","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Author(s). Published by Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"121604"}}