{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T18:28:20Z","timestamp":1743013700337,"version":"3.37.3"},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2018AAA0100300"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["12071056","62173319"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2025,1]]},"DOI":"10.1016\/j.ins.2024.121402","type":"journal-article","created":{"date-parts":[[2024,8,28]],"date-time":"2024-08-28T13:15:26Z","timestamp":1724850926000},"page":"121402","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Self-organizing hierarchical incremental learning framework and universal approximation analysis based on stochastic configuration mechanism"],"prefix":"10.1016","volume":"688","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-4719-1647","authenticated-orcid":false,"given":"Bao","family":"Shi","sequence":"first","affiliation":[]},{"given":"Yongsheng","family":"Ou","sequence":"additional","affiliation":[]},{"given":"Degang","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0323-1299","authenticated-orcid":false,"given":"Guoliang","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2024.121402_br0010","article-title":"A federated convolution transformer for fake news detection","author":"Djenouri","year":"2023","journal-title":"IEEE Trans. Big Data"},{"key":"10.1016\/j.ins.2024.121402_br0020","first-page":"1","article-title":"Mixed-pose positioning in smartphone-based pedestrian dead reckoning using hierarchical clustering","volume":"72","author":"Tian","year":"2023","journal-title":"IEEE Trans. Instrum. Meas."},{"author":"Barshooi","key":"10.1016\/j.ins.2024.121402_br0030"},{"author":"Wu","key":"10.1016\/j.ins.2024.121402_br0040"},{"issue":"9","key":"10.1016\/j.ins.2024.121402_br0050","doi-asserted-by":"crossref","first-page":"1436","DOI":"10.1109\/TNNLS.2012.2200262","article-title":"Efficient sparse modeling with automatic feature grouping","volume":"23","author":"Zhong","year":"2012","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ins.2024.121402_br0060","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2023.119788","article-title":"SFKNN-DPC: standard deviation weighted distance based density peak clustering algorithm","volume":"653","author":"Xie","year":"2024","journal-title":"Inf. Sci."},{"issue":"10","key":"10.1016\/j.ins.2024.121402_br0070","doi-asserted-by":"crossref","first-page":"3466","DOI":"10.1109\/TCYB.2017.2734043","article-title":"Stochastic configuration networks: fundamentals and algorithms","volume":"47","author":"Wang","year":"2017","journal-title":"IEEE Trans. Cybern."},{"issue":"10","key":"10.1016\/j.ins.2024.121402_br0080","doi-asserted-by":"crossref","first-page":"2843","DOI":"10.1007\/s13042-022-01565-z","article-title":"Stochastic configuration networks for imbalanced data classification","volume":"13","author":"Dai","year":"2022","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.ins.2024.121402_br0090","first-page":"1","article-title":"Research progress on stochastic configuration networks","author":"Zhang","year":"2023","journal-title":"J. Softw."},{"key":"10.1016\/j.ins.2024.121402_br0100","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2024.120098","article-title":"Prediction of X-ray fluorescence copper grade using regularized stochastic configuration networks","volume":"659","author":"Sun","year":"2024","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121402_br0110","doi-asserted-by":"crossref","DOI":"10.1016\/j.jprocont.2023.103159","article-title":"Geometric constructive network with block increments for lightweight data-driven industrial process modeling","volume":"134","author":"Nan","year":"2024","journal-title":"J. Process Control"},{"issue":"24","key":"10.1016\/j.ins.2024.121402_br0120","doi-asserted-by":"crossref","first-page":"22047","DOI":"10.1007\/s00521-022-07657-9","article-title":"Industrial data classification using stochastic configuration networks with self-attention learning features","volume":"34","author":"Li","year":"2022","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.ins.2024.121402_br0130","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1016\/j.ins.2022.11.046","article-title":"Learning with privileged information for short-term photovoltaic power forecasting using stochastic configuration network","volume":"619","author":"Zhou","year":"2023","journal-title":"Inf. Sci."},{"issue":"14","key":"10.1016\/j.ins.2024.121402_br0140","doi-asserted-by":"crossref","first-page":"10109","DOI":"10.1007\/s00521-023-08368-5","article-title":"A lightweight fast human activity recognition method using hybrid unsupervised-supervised feature","volume":"35","author":"Nan","year":"2023","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.ins.2024.121402_br0150","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/j.ins.2020.02.058","article-title":"Self-blast state detection of glass insulators based on stochastic configuration networks and a feedback transfer learning mechanism","volume":"522","author":"Zhang","year":"2020","journal-title":"Inf. Sci."},{"issue":"1","key":"10.1016\/j.ins.2024.121402_br0160","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1109\/TII.2019.2919268","article-title":"Stochastic configuration networks based adaptive storage replica management for power big data processing","volume":"16","author":"Huang","year":"2020","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.ins.2024.121402_br0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2024.120885","article-title":"Stochastic configuration networks with improved supervisory mechanism","author":"Nan","year":"2024","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121402_br0180","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.ins.2022.11.134","article-title":"An improved stochastic configuration network for concentration prediction in wastewater treatment process","volume":"622","author":"Li","year":"2023","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121402_br0190","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2024.120689","article-title":"An information entropy-based fuzzy stochastic configuration network for robust data modeling","volume":"675","author":"Wang","year":"2024","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121402_br0200","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.ins.2018.08.065","article-title":"Hierarchical residual stochastic networks for time series recognition","volume":"471","author":"Xie","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121402_br0210","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2020.05.112","article-title":"Distributed stochastic configuration networks with cooperative learning paradigm","volume":"540","author":"Ai","year":"2020","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121402_br0220","article-title":"A compact constraint incremental method for random weight networks and its application","author":"Wang","year":"2023","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ins.2024.121402_br0230","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110464","article-title":"Greedy stochastic configuration networks for ill-posed problems","volume":"269","author":"Zhou","year":"2023","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2024.121402_br0240","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.ins.2023.01.128","article-title":"Stochastic configuration networks with chaotic maps and hierarchical learning strategy","volume":"629","author":"Qiao","year":"2023","journal-title":"Inf. Sci."},{"issue":"8","key":"10.1016\/j.ins.2024.121402_br0250","doi-asserted-by":"crossref","first-page":"3560","DOI":"10.1109\/TNNLS.2021.3053306","article-title":"Hierarchical-Bayesian-based sparse stochastic configuration networks for construction of prediction intervals","volume":"33","author":"Lu","year":"2022","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"4","key":"10.1016\/j.ins.2024.121402_br0260","doi-asserted-by":"crossref","first-page":"2331","DOI":"10.1109\/TII.2021.3096840","article-title":"Hybrid parallel stochastic configuration networks for industrial data analytics","volume":"18","author":"Dai","year":"2022","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.ins.2024.121402_br0270","doi-asserted-by":"crossref","first-page":"819","DOI":"10.1016\/j.ins.2022.06.028","article-title":"Deep stochastic configuration networks with different random sampling strategies","volume":"607","author":"Felicetti","year":"2022","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121402_br0280","series-title":"2018 International Joint Conference on Neural Networks (IJCNN)","first-page":"1","article-title":"Deep stochastic configuration networks with universal approximation property","author":"Wang","year":"2018"},{"key":"10.1016\/j.ins.2024.121402_br0290","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.121633","article-title":"Adaptive stochastic configuration network ensemble for structural reliability analysis","volume":"237","author":"Liu","year":"2024","journal-title":"Expert Syst. Appl."},{"author":"Wang","key":"10.1016\/j.ins.2024.121402_br0300"},{"year":"1985","series-title":"The Theory of Matrices: with Applications","author":"Lancaster","key":"10.1016\/j.ins.2024.121402_br0310"},{"issue":"4","key":"10.1016\/j.ins.2024.121402_br0320","doi-asserted-by":"crossref","first-page":"347","DOI":"10.1016\/0098-1354(92)80053-C","article-title":"Hierarchical neural networks","volume":"16","author":"Mavrovouniotis","year":"1992","journal-title":"Comput. Chem. Eng."},{"issue":"2","key":"10.1016\/j.ins.2024.121402_br0330","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1142\/S0219720005001004","article-title":"Minimum redundancy feature selection from microarray gene expression data","volume":"3","author":"Ding","year":"2005","journal-title":"J. Bioinform. Comput. Biol."},{"issue":"4","key":"10.1016\/j.ins.2024.121402_br0340","doi-asserted-by":"crossref","first-page":"1315","DOI":"10.1109\/18.761290","article-title":"Estimation of the information by an adaptive partitioning of the observation space","volume":"45","author":"Darbellay","year":"1999","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"12","key":"10.1016\/j.ins.2024.121402_br0350","doi-asserted-by":"crossref","first-page":"5104","DOI":"10.1109\/TFUZZ.2022.3165690","article-title":"A self-organized method for a hierarchical fuzzy logic system based on a fuzzy autoencoder","volume":"30","author":"Zhao","year":"2022","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"12","key":"10.1016\/j.ins.2024.121402_br0360","first-page":"3171","article-title":"A sparse learning method for SCN soft measurement model","volume":"37","author":"Wang","year":"2022","journal-title":"Control Decis."},{"issue":"20","key":"10.1016\/j.ins.2024.121402_br0370","doi-asserted-by":"crossref","first-page":"5221","DOI":"10.1109\/JLT.2019.2930624","article-title":"A novel fiber intrusion signal recognition method for OFPS based on SCN with dropout","volume":"37","author":"Li","year":"2019","journal-title":"J. Lightwave Technol."},{"key":"10.1016\/j.ins.2024.121402_br0380","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.ins.2019.04.055","article-title":"Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams","volume":"495","author":"Pratama","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121402_br0390","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.ins.2017.07.003","article-title":"Stochastic configuration networks ensemble with heterogeneous features for large-scale data analytics","volume":"417","author":"Wang","year":"2017","journal-title":"Inf. Sci."},{"issue":"3","key":"10.1016\/j.ins.2024.121402_br0400","doi-asserted-by":"crossref","first-page":"948","DOI":"10.1109\/TFUZZ.2023.3315368","article-title":"Fuzzy stochastic configuration networks for nonlinear system modeling","volume":"32","author":"Li","year":"2024","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.ins.2024.121402_br0410","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1016\/j.ins.2019.01.062","article-title":"Stochastic configuration networks with block increments for data modeling in process industries","volume":"484","author":"Dai","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121402_br0420","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.neunet.2021.03.016","article-title":"Bidirectional stochastic configuration network for regression problems","volume":"140","author":"Cao","year":"2021","journal-title":"Neural Netw."},{"key":"10.1016\/j.ins.2024.121402_br0430","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/j.ins.2019.02.066","article-title":"A further study on the inequality constraints in stochastic configuration networks","volume":"487","author":"Zhu","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121402_br0440","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.106924","article-title":"A stochastic configuration network based on chaotic sparrow search algorithm","volume":"220","author":"Zhang","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2024.121402_br0450","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1016\/j.ins.2016.12.007","article-title":"Insights into randomized algorithms for neural networks: practical issues and common pitfalls","volume":"382","author":"Li","year":"2017","journal-title":"Inf. Sci."},{"author":"Xiao","key":"10.1016\/j.ins.2024.121402_br0460"},{"issue":"11","key":"10.1016\/j.ins.2024.121402_br0470","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","article-title":"Gradient-based learning applied to document recognition","volume":"86","author":"LeCun","year":"1998","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.ins.2024.121402_br0480","series-title":"2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"2","article-title":"Learning methods for generic object recognition with invariance to pose and lighting","author":"LeCun","year":"2004"},{"key":"10.1016\/j.ins.2024.121402_br0490","series-title":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","first-page":"2995","article-title":"A comparative study on machine learning algorithms for the control of a wall following robot","author":"Hammad","year":"2019"},{"key":"10.1016\/j.ins.2024.121402_br0500","series-title":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","first-page":"389","article-title":"Recognition of human arm gestures using Myo armband for the game of hand cricket","author":"Krishnan","year":"2017"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524013161?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524013161?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T19:14:18Z","timestamp":1726254858000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025524013161"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,1]]},"references-count":50,"alternative-id":["S0020025524013161"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2024.121402","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2025,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Self-organizing hierarchical incremental learning framework and universal approximation analysis based on stochastic configuration mechanism","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2024.121402","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"121402"}}