{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T00:21:36Z","timestamp":1726273296877},"reference-count":44,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62376230","61976182","62076171"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2025,1]]},"DOI":"10.1016\/j.ins.2024.121396","type":"journal-article","created":{"date-parts":[[2024,8,28]],"date-time":"2024-08-28T17:14:41Z","timestamp":1724865281000},"page":"121396","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Multi-view clustering via double spaces structure learning and adaptive multiple projection regression learning"],"prefix":"10.1016","volume":"688","author":[{"ORCID":"http:\/\/orcid.org\/0009-0009-3460-0331","authenticated-orcid":false,"given":"Ronggang","family":"Cai","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7225-5577","authenticated-orcid":false,"given":"Hongmei","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Yong","family":"Mi","sequence":"additional","affiliation":[]},{"given":"Tianrui","family":"Li","sequence":"additional","affiliation":[]},{"given":"Chuan","family":"Luo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9978-0400","authenticated-orcid":false,"given":"Shi-Jinn","family":"Horng","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2024.121396_br0010","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.inffus.2017.02.007","article-title":"Multi-view learning overview: recent progress and new challenges","volume":"38","author":"Zhao","year":"2017","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.ins.2024.121396_br0020","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.inffus.2021.12.001","article-title":"Nonredundancy regularization based nonnegative matrix factorization with manifold learning for multiview data representation","volume":"82","author":"Cui","year":"2022","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.ins.2024.121396_br0030","doi-asserted-by":"crossref","DOI":"10.1016\/j.dsp.2022.103447","article-title":"Robust multi-view non-negative matrix factorization for clustering","volume":"123","author":"Liu","year":"2022","journal-title":"Digit. Signal Process."},{"key":"10.1016\/j.ins.2024.121396_br0040","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.neunet.2022.03.009","article-title":"Robust multi-view subspace clustering based on consensus representation and orthogonal diversity","volume":"150","author":"Zhao","year":"2022","journal-title":"Neural Netw."},{"key":"10.1016\/j.ins.2024.121396_br0050","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2021.108196","article-title":"Consistent and diverse multi-view subspace clustering with structure constraint","volume":"121","author":"Si","year":"2022","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.ins.2024.121396_br0060","doi-asserted-by":"crossref","DOI":"10.1016\/j.dsp.2022.103607","article-title":"Multi-view clustering via robust consistent graph learning","volume":"128","author":"Wang","year":"2022","journal-title":"Digit. Signal Process."},{"issue":"9","key":"10.1016\/j.ins.2024.121396_br0070","doi-asserted-by":"crossref","first-page":"8976","DOI":"10.1109\/TCYB.2021.3061660","article-title":"Structured graph learning for scalable subspace clustering: from single view to multiview","volume":"52","author":"Kang","year":"2022","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2024.121396_br0080","first-page":"1","article-title":"Deep multiview collaborative clustering","author":"Yang","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ins.2024.121396_br0090","first-page":"1","article-title":"Deep adversarial inconsistent cognitive sampling for multiview progressive subspace clustering","author":"Sun","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ins.2024.121396_br0100","doi-asserted-by":"crossref","first-page":"352","DOI":"10.1016\/j.neucom.2021.08.113","article-title":"Re-weighted multi-view clustering via triplex regularized non-negative matrix factorization","volume":"464","author":"Feng","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2024.121396_br0110","doi-asserted-by":"crossref","first-page":"493","DOI":"10.1016\/j.ins.2022.12.098","article-title":"Linear dimensionality reduction method based on topological properties","volume":"624","author":"Yao","year":"2023","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121396_br0120","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.neucom.2021.03.115","article-title":"Multi-view subspace clustering networks with local and global graph information","volume":"449","author":"Zheng","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2024.121396_br0130","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.108610","article-title":"An attention-based framework for multi-view clustering on Grassmann manifold","volume":"128","author":"Wu","year":"2022","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.ins.2024.121396_br0140","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2019.105102","article-title":"Multi-graph fusion for multi-view spectral clustering","volume":"189","author":"Kang","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2024.121396_br0150","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.ins.2020.11.037","article-title":"Multiview clustering via exclusive non-negative subspace learning and constraint propagation","volume":"552","author":"Zhou","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121396_br0160","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107632","article-title":"Multi-view spectral clustering by simultaneous consensus graph learning and discretization","volume":"235","author":"Zhong","year":"2022","journal-title":"Knowl.-Based Syst."},{"issue":"7","key":"10.1016\/j.ins.2024.121396_br0170","first-page":"3418","article-title":"Multi-view spectral clustering with high-order optimal neighborhood Laplacian matrix","volume":"34","author":"Liang","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2024.121396_br0180","first-page":"1","article-title":"Flexible multiview spectral clustering with self-adaptation","author":"Shi","year":"2021","journal-title":"IEEE Trans. Cybern."},{"issue":"10","key":"10.1016\/j.ins.2024.121396_br0190","doi-asserted-by":"crossref","first-page":"4676","DOI":"10.1109\/TKDE.2020.3045770","article-title":"Consensus one-step multi-view subspace clustering","volume":"34","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2024.121396_br0200","doi-asserted-by":"crossref","first-page":"472","DOI":"10.1016\/j.ins.2022.02.018","article-title":"Simultaneous multi-graph learning and clustering for multiview data","volume":"593","author":"Ma","year":"2022","journal-title":"Inf. Sci."},{"issue":"1","key":"10.1016\/j.ins.2024.121396_br0210","doi-asserted-by":"crossref","first-page":"330","DOI":"10.1109\/TPAMI.2020.3011148","article-title":"Multiview clustering: a scalable and parameter-free bipartite graph fusion method","volume":"44","author":"Li","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"12","key":"10.1016\/j.ins.2024.121396_br0220","doi-asserted-by":"crossref","first-page":"7944","DOI":"10.1109\/TNNLS.2021.3087162","article-title":"Parameter-free consensus embedding learning for multiview graph-based clustering","volume":"33","author":"Wu","year":"2022","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ins.2024.121396_br0230","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2023.01.013","article-title":"Incomplete multi-view clustering via kernelized graph learning","volume":"625","author":"Xia","year":"2023","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121396_br0240","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2022.109140","article-title":"Fuzzy clustering for multiview data by combining latent information","volume":"126","author":"Wei","year":"2022","journal-title":"Appl. Soft Comput."},{"issue":"3","key":"10.1016\/j.ins.2024.121396_br0250","doi-asserted-by":"crossref","first-page":"916","DOI":"10.1109\/TR.2021.3079955","article-title":"Tensor-based reliable multiview similarity learning for robust spectral clustering on uncertain data","volume":"70","author":"Li","year":"2021","journal-title":"IEEE Trans. Reliab."},{"key":"10.1016\/j.ins.2024.121396_br0260","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1016\/j.neunet.2021.11.027","article-title":"Efficient correntropy-based multi-view clustering with anchor graph embedding","volume":"146","author":"Yang","year":"2022","journal-title":"Neural Netw."},{"key":"10.1016\/j.ins.2024.121396_br0270","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.neucom.2019.11.014","article-title":"Multi-view clustering by joint manifold learning and tensor nuclear norm","volume":"380","author":"Xie","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2024.121396_br0280","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107749","article-title":"Feature selection based on non-negative spectral feature learning and adaptive rank constraint","volume":"236","author":"Shang","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2024.121396_br0290","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.neucom.2016.10.089","article-title":"A novel low-rank hypergraph feature selection for multi-view classification","volume":"253","author":"Cheng","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2024.121396_br0300","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1016\/j.ins.2021.09.009","article-title":"A supervised multi-view feature selection method based on locally sparse regularization and block computing","volume":"582","author":"Lin","year":"2022","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121396_br0310","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.neucom.2020.01.044","article-title":"Multi-view feature selection via nonnegative structured graph learning","volume":"387","author":"Bai","year":"2020","journal-title":"Neurocomputing"},{"issue":"10","key":"10.1016\/j.ins.2024.121396_br0320","doi-asserted-by":"crossref","first-page":"4705","DOI":"10.1109\/TKDE.2020.3048678","article-title":"Cross-view locality preserved diversity and consensus learning for multi-view unsupervised feature selection","volume":"34","author":"Tang","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2024.121396_br0330","doi-asserted-by":"crossref","first-page":"410","DOI":"10.1016\/j.ins.2021.01.033","article-title":"Multi-view subspace clustering via partition fusion","volume":"560","author":"Lv","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121396_br0340","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neucom.2019.12.004","article-title":"Multi-view spectral clustering via sparse graph learning","volume":"384","author":"Hu","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2024.121396_br0350","doi-asserted-by":"crossref","DOI":"10.1016\/j.dsp.2022.103888","article-title":"Virtual label guided multi-view non-negative matrix factorization for data clustering","volume":"133","author":"Liu","year":"2023","journal-title":"Digit. Signal Process."},{"key":"10.1016\/j.ins.2024.121396_br0360","doi-asserted-by":"crossref","first-page":"1009","DOI":"10.1016\/j.knosys.2018.10.022","article-title":"A study of graph-based system for multi-view clustering","volume":"163","author":"Wang","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2024.121396_br0370","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.neucom.2022.12.023","article-title":"One step multi-view spectral clustering via joint adaptive graph learning and matrix factorization","volume":"524","author":"Yang","year":"2023","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.ins.2024.121396_br0380","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1109\/TPAMI.2018.2877660","article-title":"Generalized latent multi-view subspace clustering","volume":"42","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"10","key":"10.1016\/j.ins.2024.121396_br0390","doi-asserted-by":"crossref","first-page":"2887","DOI":"10.1109\/TCYB.2017.2751646","article-title":"Graph learning for multiview clustering","volume":"48","author":"Zhan","year":"2018","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2024.121396_br0400","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1016\/j.inffus.2019.09.005","article-title":"Multi-view spectral clustering via integrating nonnegative embedding and spectral embedding","volume":"55","author":"Hu","year":"2020","journal-title":"Inf. Fusion"},{"issue":"6","key":"10.1016\/j.ins.2024.121396_br0410","doi-asserted-by":"crossref","first-page":"1116","DOI":"10.1109\/TKDE.2019.2903810","article-title":"Gmc: graph-based multi-view clustering","volume":"32","author":"Wang","year":"2020","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2024.121396_br0420","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106280","article-title":"Simultaneously learning feature-wise weights and local structures for multi-view subspace clustering","volume":"205","author":"Lin","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2024.121396_br0430","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1016\/j.neucom.2020.08.049","article-title":"Multi-view clustering based on generalized low rank approximation","volume":"471","author":"Li","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2024.121396_br0440","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.109479","article-title":"Learning an enhanced consensus representation for multi-view clustering via latent representation correlation preserving","volume":"253","author":"Gui","year":"2022","journal-title":"Knowl.-Based Syst."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524013100?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524013100?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T23:13:30Z","timestamp":1726269210000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025524013100"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,1]]},"references-count":44,"alternative-id":["S0020025524013100"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2024.121396","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2025,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multi-view clustering via double spaces structure learning and adaptive multiple projection regression learning","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2024.121396","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"121396"}}