{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,14]],"date-time":"2024-07-14T00:13:44Z","timestamp":1720916024098},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T00:00:00Z","timestamp":1725148800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2018AAA0100602"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["201964022"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["U1706218","41927805"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007129","name":"Shandong Province Natural Science Foundation","doi-asserted-by":"publisher","award":["ZR2023MF106","ZR2018ZB0852"],"id":[{"id":"10.13039\/501100007129","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2024,9]]},"DOI":"10.1016\/j.ins.2024.121086","type":"journal-article","created":{"date-parts":[[2024,6,26]],"date-time":"2024-06-26T16:39:38Z","timestamp":1719419978000},"page":"121086","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Mixture of deep networks for facial age estimation"],"prefix":"10.1016","volume":"679","author":[{"given":"Qilu","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Jiawei","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Weibo","family":"Wei","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2024.121086_br0010","series-title":"Proc. CVPR 2011","first-page":"585","article-title":"Ordinal hyperplanes ranker with cost sensitivities for age estimation","author":"Chang","year":"2011"},{"issue":"6","key":"10.1016\/j.ins.2024.121086_br0020","doi-asserted-by":"crossref","first-page":"804","DOI":"10.1109\/TMM.2015.2420374","article-title":"Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset","volume":"17","author":"Chen","year":"2015","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.ins.2024.121086_br0030","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1016\/j.patrec.2020.11.008","article-title":"Rank consistent ordinal regression for neural networks with application to age estimation","volume":"140","author":"Cao","year":"2020","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.ins.2024.121086_br0040","series-title":"Proc. CVPR 2021","first-page":"10498","article-title":"PML: progressive margin loss for long-tailed age classification","author":"Deng","year":"2021"},{"key":"10.1016\/j.ins.2024.121086_br0050","series-title":"Proc. CVPR 2009","first-page":"112","article-title":"Human age estimation using bio-inspired features","author":"Guo","year":"2009"},{"key":"10.1016\/j.ins.2024.121086_br0060","doi-asserted-by":"crossref","first-page":"1309","DOI":"10.1016\/j.ins.2022.07.135","article-title":"Facial age estimation using tensor based subspace learning and deep random forests","volume":"609","author":"Guehairia","year":"2022","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.121086_br0070","series-title":"Proc. IJCAI 2018","first-page":"712","article-title":"Age estimation using expectation of label distribution learning","author":"Gao","year":"2018"},{"issue":"2","key":"10.1016\/j.ins.2024.121086_br0080","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1109\/TPAMI.2019.2937294","article-title":"Deep differentiable random forests for age estimation","volume":"43","author":"Shen","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"12","key":"10.1016\/j.ins.2024.121086_br0090","doi-asserted-by":"crossref","first-page":"14682","DOI":"10.1109\/TPAMI.2023.3319472","article-title":"Hierarchical attention-based age estimation and bias estimation","volume":"45","author":"Hiba","year":"2023","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2024.121086_br0100","series-title":"Proc. CVPR 2016","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"issue":"11","key":"10.1016\/j.ins.2024.121086_br0110","doi-asserted-by":"crossref","first-page":"2597","DOI":"10.1109\/TPAMI.2017.2738004","article-title":"Heterogeneous face attribute estimation: a deep multi-task learning approach","volume":"40","author":"Han","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"6","key":"10.1016\/j.ins.2024.121086_br0120","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1145\/3065386","article-title":"ImageNet classification with deep convolutional neural networks","volume":"60","author":"Krizhevsky","year":"2017","journal-title":"Commun. ACM"},{"key":"10.1016\/j.ins.2024.121086_br0130","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.109066","article-title":"TAA-GCN: a temporally aware adaptive graph convolutional network for age estimation","volume":"134","author":"Korban","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.ins.2024.121086_br0140","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.future.2022.10.009","article-title":"Deep multi-input multi-stream ordinal model for age estimation: based on spatial attention learning","volume":"140","author":"Kong","year":"2023","journal-title":"Future Gener. Comput. Syst."},{"key":"10.1016\/j.ins.2024.121086_br0150","series-title":"Proc. IJCNN 2022","first-page":"1","article-title":"Learning deep contrastive network for facial age estimation","author":"Kong","year":"2022"},{"key":"10.1016\/j.ins.2024.121086_br0160","series-title":"Proc. CVPR 2019","first-page":"1145","article-title":"BridgeNet: a continuity-aware probabilistic network for age estimation","author":"Li","year":"2019"},{"issue":"2","key":"10.1016\/j.ins.2024.121086_br0170","doi-asserted-by":"crossref","first-page":"486","DOI":"10.1109\/TCSVT.2017.2782709","article-title":"Ordinal deep learning for facial age estimation","volume":"29","author":"Liu","year":"2019","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.ins.2024.121086_br0180","series-title":"Proc. CVPR 2022","first-page":"20481","article-title":"Unimodal-concentrated loss: fully adaptive label distribution learning for ordinal regression","author":"Li","year":"2022"},{"key":"10.1016\/j.ins.2024.121086_br0190","author":"Li"},{"key":"10.1016\/j.ins.2024.121086_br0200","series-title":"Proc. ICLR 2020","article-title":"Order learning and its application to age estimation","author":"Lim","year":"2020"},{"key":"10.1016\/j.ins.2024.121086_br0210","series-title":"Proc. ICLR 2021","article-title":"Deep repulsive clustering of ordered data based on order-identity decomposition","author":"Lee","year":"2021"},{"key":"10.1016\/j.ins.2024.121086_br0220","article-title":"FP-Age: leveraging face parsing attention for facial age estimation in the wild","author":"Lin","year":"2022","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2024.121086_br0230","doi-asserted-by":"crossref","first-page":"4761","DOI":"10.1109\/TIP.2022.3188061","article-title":"MetaAge: meta-learning personalized age estimators","volume":"31","author":"Li","year":"2022","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2024.121086_br0240","series-title":"Pro. CVPR 2016","first-page":"4920","article-title":"Ordinal regression with multiple output CNN for age estimation","author":"Niu","year":"2016"},{"key":"10.1016\/j.ins.2024.121086_br0250","series-title":"Proc. ECCV'16","first-page":"69","article-title":"Unsupervised learning of visual representations by solving jigsaw puzzles","author":"Noroozi","year":"2016"},{"key":"10.1016\/j.ins.2024.121086_br0260","series-title":"Proc. CVPR 2018","first-page":"5285","article-title":"Mean-variance loss for deep age estimation from a face","author":"Pan","year":"2018"},{"issue":"2\u20134","key":"10.1016\/j.ins.2024.121086_br0270","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1007\/s11263-016-0940-3","article-title":"Deep expectation of real and apparent age from a single image without facial landmarks","volume":"126","author":"Rothe","year":"2018","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.ins.2024.121086_br0280","series-title":"7th Int. Conf. Automatic Face and Gesture Recognition","first-page":"341","article-title":"MORPH: a longitudinal image database of normal adult age-progression","author":"Ricanek","year":"2006"},{"issue":"24","key":"10.1016\/j.ins.2024.121086_br0290","first-page":"1","article-title":"MLxtend: providing machine learning and data science utilities and extensions to Python's scientific computing stack","volume":"3","author":"Raschka","year":"2018","journal-title":"J. Open Sour. Softw."},{"key":"10.1016\/j.ins.2024.121086_br0300","doi-asserted-by":"crossref","first-page":"368","DOI":"10.1016\/j.image.2019.08.003","article-title":"DeepAge: deep learning of face-based age estimation","volume":"78","author":"Sendik","year":"2019","journal-title":"Signal Process. Image Commun."},{"key":"10.1016\/j.ins.2024.121086_br0310","series-title":"Proc. CVPR 2018","first-page":"2304","article-title":"Deep regression forests for age estimation","author":"Shen","year":"2018"},{"key":"10.1016\/j.ins.2024.121086_br0320","series-title":"Proc. CVPR 2022","first-page":"18739","article-title":"Moving window regression: a novel approach to ordinal regression","author":"Shin","year":"2022"},{"key":"10.1016\/j.ins.2024.121086_br0330","author":"Simonyan"},{"issue":"11","key":"10.1016\/j.ins.2024.121086_br0340","doi-asserted-by":"crossref","first-page":"2610","DOI":"10.1109\/TPAMI.2017.2779808","article-title":"Efficient group-n encoding and decoding for facial age estimation","volume":"40","author":"Tan","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2024.121086_br0350","author":"Dosovitskiy"},{"key":"10.1016\/j.ins.2024.121086_br0360","series-title":"Proc. 2015 IEEE Winter Conf. Applications of Computer Vision","first-page":"534","article-title":"Deeply-learned feature for age estimation","author":"Wang","year":"2015"},{"key":"10.1016\/j.ins.2024.121086_br0370","doi-asserted-by":"crossref","first-page":"1084","DOI":"10.1109\/TIP.2021.3139226","article-title":"Improving face-based age estimation with attention-based dynamic patch fusion","volume":"31","author":"Wang","year":"2022","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2024.121086_br0380","series-title":"Proc. ECCV 2020","article-title":"Adaptive variance based label distribution learning for facial age estimation","author":"Wen","year":"2020"},{"key":"10.1016\/j.ins.2024.121086_br0390","doi-asserted-by":"crossref","first-page":"2417","DOI":"10.1109\/TIFS.2020.2969552","article-title":"Multi-stage feature constraints learning for age estimation","volume":"15","author":"Xia","year":"2020","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"key":"10.1016\/j.ins.2024.121086_br0400","series-title":"Proc. IJCAI-ECAI-18","first-page":"1078","article-title":"SSR-Net: a compact soft stagewise regression network for age estimation","author":"Yang","year":"2018"},{"issue":"7","key":"10.1016\/j.ins.2024.121086_br0410","doi-asserted-by":"crossref","first-page":"3108","DOI":"10.1109\/TNNLS.2020.3009523","article-title":"Distilling ordinal relation and dark knowledge for facial age estimation","volume":"32","author":"Zhao","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ins.2024.121086_br0420","doi-asserted-by":"crossref","first-page":"134209","DOI":"10.1109\/ACCESS.2020.3010815","article-title":"Soft-ranking label encoding for robust facial age estimation","volume":"8","author":"Zeng","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.ins.2024.121086_br0430","series-title":"Proc. ECCV 2014","first-page":"818","article-title":"Visualizing and understanding convolutional networks","author":"Zeiler","year":"2014"},{"key":"10.1016\/j.ins.2024.121086_br0440","author":"Kingma"},{"key":"10.1016\/j.ins.2024.121086_br0450","doi-asserted-by":"crossref","first-page":"1972","DOI":"10.1109\/TIP.2019.2948288","article-title":"Attended end-to-end architecture for age estimation from facial expression videos","volume":"29","author":"Pei","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2024.121086_br0460","series-title":"Proc. CVPR 2018","first-page":"399","article-title":"Deep cost-sensitive and order-preserving feature learning for cross-population age estimation","author":"Li","year":"2018"},{"key":"10.1016\/j.ins.2024.121086_br0470","series-title":"Proc. CVPR 2023","first-page":"15836","article-title":"DAA: a delta age AdaIN operation for age estimation via binary code transformer","author":"Chen","year":"2023"},{"key":"10.1016\/j.ins.2024.121086_br0480","doi-asserted-by":"crossref","first-page":"6155","DOI":"10.1109\/TIP.2023.3327540","article-title":"General vs. long-tailed age estimation: an approach to kill two birds with one stone","volume":"32","author":"Bao","year":"2023","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"10.1016\/j.ins.2024.121086_br0490","doi-asserted-by":"crossref","first-page":"1603","DOI":"10.1109\/TPAMI.2022.3187079","article-title":"RAgE: robust age estimation through subject anchoring with consistency regularisation","volume":"46","author":"Akbari","year":"2024","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"4","key":"10.1016\/j.ins.2024.121086_br0500","doi-asserted-by":"crossref","first-page":"2223","DOI":"10.1109\/TCSVT.2023.3304724","article-title":"SwinFace: a multi-task transformer for face recognition, expression recognition, age estimation and attribute estimation","volume":"34","author":"Qin","year":"2024","journal-title":"IEEE Trans. Circuits Syst. Video Technol."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524010004?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524010004?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,13]],"date-time":"2024-07-13T00:30:30Z","timestamp":1720830630000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025524010004"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9]]},"references-count":50,"alternative-id":["S0020025524010004"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2024.121086","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2024,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Mixture of deep networks for facial age estimation","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2024.121086","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"121086"}}