{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,20]],"date-time":"2024-12-20T05:35:27Z","timestamp":1734672927876,"version":"3.32.0"},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.ins.2024.120879","type":"journal-article","created":{"date-parts":[[2024,6,12]],"date-time":"2024-06-12T17:41:18Z","timestamp":1718214078000},"page":"120879","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["A dynamic-speciation-based differential evolution with ring topology for constrained multimodal multi-objective optimization"],"prefix":"10.1016","volume":"677","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-7599-3447","authenticated-orcid":false,"given":"Guoqing","family":"Li","sequence":"first","affiliation":[]},{"given":"Weiwei","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3362-0703","authenticated-orcid":false,"given":"Caitong","family":"Yue","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5767-3343","authenticated-orcid":false,"given":"Yirui","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0009-0003-7678-4323","authenticated-orcid":false,"given":"Jun","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Shangce","family":"Gao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2024.120879_b0005","article-title":"Two-stage multi-objective evolution strategy for constrained multi-objective optimization","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.ins.2024.120879_b0010","doi-asserted-by":"crossref","unstructured":"K. Qiao et al., A self-adaptive evolutionary multi-task based constrained multi-objective evolutionary algorithm, IEEE Transactions on Emerging Topics in Computational Intelligence, doi: 10.1109\/TETCI.2023.3236633. (Early Access).","DOI":"10.1109\/TETCI.2023.3236633"},{"key":"10.1016\/j.ins.2024.120879_b0015","article-title":"Grid search based multi-population particle swarm optimization algorithm for multimodal multi-objective optimization","volume":"62","author":"Li","year":"2022","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.ins.2024.120879_b0020","article-title":"Multiobjective differential evolution with speciation for constrained multimodal multiobjective optimization","author":"Liang","year":"2022","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"10.1016\/j.ins.2024.120879_b0025","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1109\/TEVC.2019.2909744","article-title":"A review of evolutionary multimodal multiobjective optimization","volume":"24","author":"Tanabe","year":"2020","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"11","key":"10.1016\/j.ins.2024.120879_b0030","first-page":"2577","article-title":"A survey on multimodal multiobjective optimization","volume":"36","author":"Yue","year":"2021","journal-title":"Control and Decision"},{"key":"10.1016\/j.ins.2024.120879_b0035","doi-asserted-by":"crossref","DOI":"10.1016\/j.swevo.2023.101253","article-title":"Multimodal multi-objective optimization: comparative study of the state-of-the-art","volume":"77","author":"Li","year":"2023","journal-title":"Swarm Evol. Comput."},{"issue":"1","key":"10.1016\/j.ins.2024.120879_b0040","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1109\/TEVC.2009.2026270","article-title":"Niching without niching parameters: particle swarm optimization using a ring topology","volume":"14","author":"Li","year":"2010","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.ins.2024.120879_b0045","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1016\/j.ins.2021.09.043","article-title":"A cluster-based immune-inspired algorithm using manifold learning for multimodal multi-objective optimization","volume":"581","author":"Zhang","year":"2021","journal-title":"Inf. Sci."},{"issue":"1","key":"10.1016\/j.ins.2024.120879_b0050","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1109\/TCYB.2015.2394466","article-title":"Ensemble and arithmetic recombination-based speciation differential evolution for multimodal optimization","volume":"46","author":"Hui","year":"2016","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2024.120879_b0055","doi-asserted-by":"crossref","DOI":"10.1016\/j.swevo.2022.101162","article-title":"A constrained multi-objective evolutionary algorithm based on decomposition with improved constrained dominance principle","volume":"75","author":"Gu","year":"2022","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.ins.2024.120879_b0060","doi-asserted-by":"crossref","unstructured":"M. Javadi et al., A multi-objective model for home energy management system self-scheduling using the epsilon-constraint method, 2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Setubal, Portugal, 2020, pp. 175-180, doi: 10.1109\/CPE-POWERENG48600.2020.9161526.","DOI":"10.1109\/CPE-POWERENG48600.2020.9161526"},{"issue":"3","key":"10.1016\/j.ins.2024.120879_b0065","doi-asserted-by":"crossref","first-page":"284","DOI":"10.1109\/4235.873238","article-title":"Stochastic ranking for constrained evolutionary optimization","volume":"4","author":"Runarsson","year":"2000","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.ins.2024.120879_b0070","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1016\/j.swevo.2018.08.017","article-title":"Push and pull search for solving constrained multiobjective optimization problems","volume":"44","author":"Fan","year":"2019","journal-title":"Swarm Evol. Comput."},{"issue":"6","key":"10.1016\/j.ins.2024.120879_b0075","doi-asserted-by":"crossref","first-page":"712","DOI":"10.1109\/TEVC.2007.892759","article-title":"MOEA\/D: a multiobjective evolutionary algorithm based on decomposition","volume":"11","author":"Zhang","year":"2007","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"2","key":"10.1016\/j.ins.2024.120879_b0080","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1109\/4235.996017","article-title":"A fast and elitist multiobjective genetic algorithm: NSGA-II","volume":"6","author":"Deb","year":"2002","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.ins.2024.120879_b0085","first-page":"3617","article-title":"Differential evolution for multiobjective optimization with self adaptation","volume":"2007","author":"Zamuda","year":"2007","journal-title":"IEEE Congress on Evol. Comput., Singapore"},{"issue":"2","key":"10.1016\/j.ins.2024.120879_b0090","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1109\/TEVC.2022.3155533","article-title":"A survey on evolutionary constrained multiobjective optimization","volume":"27","author":"Liang","year":"2023","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"4","key":"10.1016\/j.ins.2024.120879_b0095","doi-asserted-by":"crossref","first-page":"602","DOI":"10.1109\/TEVC.2013.2281534","article-title":"An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: handling constraints and extending to an adaptive approach","volume":"18","author":"Jain","year":"2014","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.ins.2024.120879_b0100","series-title":"Proc. IEEE Congr. Evol. Comput","first-page":"460","article-title":"Angle-based constrained dominance principle in MOEA\/D for constrained multiobjective optimization problems","author":"Fan","year":"2016"},{"issue":"5","key":"10.1016\/j.ins.2024.120879_b0105","doi-asserted-by":"crossref","first-page":"2954","DOI":"10.1109\/TSMC.2021.3061698","article-title":"Dynamic selection preference-assisted constrained multiobjective differential evolution","volume":"52","author":"Yu","year":"2022","journal-title":"IEEE Trans. Syst., Man, Cybern.: Syst."},{"issue":"8","key":"10.1016\/j.ins.2024.120879_b0110","doi-asserted-by":"crossref","first-page":"5005","DOI":"10.1109\/TSMC.2019.2943973","article-title":"A new fitness function with two rankings for evolutionary constrained multiobjective optimization","volume":"51","author":"Ma","year":"2021","journal-title":"IEEE Trans. Syst., Man, Cybern.: Syst."},{"key":"10.1016\/j.ins.2024.120879_b0115","series-title":"Constrained optimization by the \u220a constrained differential evolution with gradient-based mutation and feasible elites","first-page":"1","author":"Takahama","year":"2006"},{"key":"10.1016\/j.ins.2024.120879_b0120","series-title":"Constrained manyobjective optimization: A way forward","first-page":"545","author":"Saxena","year":"2009"},{"key":"10.1016\/j.ins.2024.120879_b0125","doi-asserted-by":"crossref","unstructured":"Z. Fan et al., An improved epsilon constraint handling method embedded in MOEA\/D for constrained multi-objective optimization problems, 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 2016, pp. 1-8, doi: 10.1109\/SSCI.2016.7850224.","DOI":"10.1109\/SSCI.2016.7850224"},{"issue":"5","key":"10.1016\/j.ins.2024.120879_b0130","doi-asserted-by":"crossref","first-page":"938","DOI":"10.1109\/TEVC.2020.2981949","article-title":"A constrained multiobjective evolutionary algorithm with detect-and-escape strategy","volume":"24","author":"Zhu","year":"2020","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.ins.2024.120879_b0135","doi-asserted-by":"crossref","first-page":"336","DOI":"10.1007\/11903697_43","article-title":"Infeasible elitists and stochastic ranking selection in constrained evolutionary multi-objective optimization","author":"Geng","year":"2006","journal-title":"Proc. Asia-Pacific Conf. Simul. Evol. Learn."},{"issue":"1","key":"10.1016\/j.ins.2024.120879_b0140","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.asoc.2012.07.027","article-title":"A study of two penalty-parameterless constraint handling techniques in the framework of MOEA\/D","volume":"13","author":"Jan","year":"2013","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2024.120879_b0145","doi-asserted-by":"crossref","first-page":"2699","DOI":"10.1007\/s40747-020-00249-x","article-title":"Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems","volume":"8","author":"Gu","year":"2022","journal-title":"Complex & Intelligent Systems"},{"issue":"1","key":"10.1016\/j.ins.2024.120879_b0150","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1109\/TEVC.2020.3004012","article-title":"A coevolutionary framework for constrained multiobjective optimization problems","volume":"25","author":"Tian","year":"2021","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"5","key":"10.1016\/j.ins.2024.120879_b0155","doi-asserted-by":"crossref","first-page":"805","DOI":"10.1109\/TEVC.2017.2754271","article-title":"A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems","volume":"22","author":"Yue","year":"2018","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.ins.2024.120879_b0160","doi-asserted-by":"crossref","DOI":"10.1016\/j.swevo.2019.100569","article-title":"A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization","volume":"50","author":"Zhang","year":"2019","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.ins.2024.120879_b0165","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2019.105886","article-title":"A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems","volume":"86","author":"Qu","year":"2020","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2024.120879_b0170","article-title":"A clustering-based differential evolution algorithm for solving multimodal multi-objective optimization problems","volume":"60","author":"Liang","year":"2020","journal-title":"Swarm Evol. Comput."},{"issue":"1","key":"10.1016\/j.ins.2024.120879_b0175","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1109\/TEVC.2020.3008822","article-title":"Multimodal multiobjective evolutionary optimization with dual clustering in decision and objective spaces","volume":"25","author":"Lin","year":"2021","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"2","key":"10.1016\/j.ins.2024.120879_b0180","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1109\/TETCI.2022.3221940","article-title":"Balancing convergence and diversity in objective and decision spaces for multimodal multi-objective optimization","volume":"7","author":"Ming","year":"2023","journal-title":"IEEE Transactions on Emerging Topics in Computational Intelligence"},{"key":"10.1016\/j.ins.2024.120879_b0185","article-title":"Growing neural gas network-based surrogate-assisted pareto set learning for multimodal multi-objective optimization","volume":"97","author":"Ming","year":"2024","journal-title":"Swarm Evol. Comput."},{"issue":"4","key":"10.1016\/j.ins.2024.120879_b0190","doi-asserted-by":"crossref","first-page":"720","DOI":"10.1109\/TEVC.2019.2949841","article-title":"A framework to handle multimodal multiobjective optimization in decomposition-based evolutionary algorithms","volume":"24","author":"Tanabe","year":"2020","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.ins.2024.120879_b0195","doi-asserted-by":"crossref","DOI":"10.1016\/j.swevo.2021.100842","article-title":"Decomposition in decision and objective space for multi-modal multi-objective optimization","volume":"62","author":"Pal","year":"2021","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.ins.2024.120879_b0200","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1016\/j.ins.2021.05.075","article-title":"A two-archive algorithm with decomposition and fitness allocation for multi-modal multi-objective optimization","volume":"574","author":"Li","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2024.120879_b0205","doi-asserted-by":"crossref","DOI":"10.1016\/j.swevo.2021.100976","article-title":"Clearing-based multimodal multi-objective evolutionary optimization with layer-to-layer strategy","volume":"68","author":"Wang","year":"2022","journal-title":"Swarm Evol. Comput."},{"issue":"1","key":"10.1016\/j.ins.2024.120879_b0210","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1109\/TEVC.2022.3155757","article-title":"Hierarchy ranking method for multimodal multiobjective optimization with local pareto fronts","volume":"27","author":"Li","year":"2023","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.ins.2024.120879_b0215","doi-asserted-by":"crossref","unstructured":"C. Yang, T. Wu, and J. Ji., Two-stage species conservation for multimodal multi-objective optimization with local Pareto sets. Information Sciences, vol. 639, 118990, 2023.","DOI":"10.1016\/j.ins.2023.118990"},{"issue":"2","key":"10.1016\/j.ins.2024.120879_b0220","doi-asserted-by":"crossref","first-page":"1299","DOI":"10.1109\/TSMC.2023.3325810","article-title":"Multimodal multiobjective differential evolutionary optimization with species conservation","volume":"54","author":"Ji","year":"2024","journal-title":"IEEE Trans. Syst., Man, Cybern.: Syst."},{"key":"10.1016\/j.ins.2024.120879_b0225","doi-asserted-by":"crossref","DOI":"10.1016\/j.swevo.2024.101480","article-title":"Two-stage evolutionary algorithm with fuzzy preference indicator for multimodal multi-objective optimization","volume":"85","author":"Xie","year":"2024","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.ins.2024.120879_b0230","doi-asserted-by":"crossref","DOI":"10.1016\/j.swevo.2022.101209","article-title":"Constrained multimodal multi-objective optimization: test problem construction and algorithm design","volume":"76","author":"Ming","year":"2023","journal-title":"Swarm Evol. Comput."},{"issue":"4","key":"10.1016\/j.ins.2024.120879_b0235","doi-asserted-by":"crossref","first-page":"1089","DOI":"10.1111\/j.0006-341X.2003.00125.x","article-title":"Incorporation of clustering effects for the Wilcoxon rank sum test: a large-sample approach","volume":"59","author":"Rosner","year":"2013","journal-title":"Biometrics"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002002552400793X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002002552400793X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,19]],"date-time":"2024-12-19T21:19:27Z","timestamp":1734643167000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S002002552400793X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":47,"alternative-id":["S002002552400793X"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2024.120879","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A dynamic-speciation-based differential evolution with ring topology for constrained multimodal multi-objective optimization","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2024.120879","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"120879"}}