{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:39:32Z","timestamp":1740112772518,"version":"3.37.3"},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,5,30]],"date-time":"2024-05-30T00:00:00Z","timestamp":1717027200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100000780","name":"European Commission","doi-asserted-by":"publisher","award":["CZ.10.03.01\/00\/22_003\/0000048"],"id":[{"id":"10.13039\/501100000780","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001823","name":"Ministerstvo \u0160kolstv\u00ed, Ml\u00e1de\u017ee a T\u011blov\u00fdchovy","doi-asserted-by":"publisher","award":["SP2024\/059","SP2024\/081"],"id":[{"id":"10.13039\/501100001823","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.ins.2024.120833","type":"journal-article","created":{"date-parts":[[2024,6,5]],"date-time":"2024-06-05T17:27:39Z","timestamp":1717608459000},"page":"120833","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["FDCNN-AS: Federated deep convolutional neural network Alzheimer detection schemes for different age groups"],"prefix":"10.1016","volume":"677","author":[{"given":"Abdullah","family":"Lakhan","sequence":"first","affiliation":[]},{"given":"Mazin Abed","family":"Mohammed","sequence":"additional","affiliation":[]},{"given":"Mohd","family":"Khanapi Abd Ghani","sequence":"additional","affiliation":[]},{"given":"Karrar Hameed","family":"Abdulkareem","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2711-1857","authenticated-orcid":false,"given":"Haydar","family":"Abdulameer Marhoon","sequence":"additional","affiliation":[]},{"given":"Jan","family":"Nedoma","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2054-143X","authenticated-orcid":false,"given":"Radek","family":"Martinek","sequence":"additional","affiliation":[]},{"given":"Muhammet","family":"Deveci","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2024.120833_br0010","first-page":"1","article-title":"Insights into Alzheimer disease from single-cell genomic approaches","author":"Murdock","year":"2023","journal-title":"Nat. Neurosci."},{"issue":"1","key":"10.1016\/j.ins.2024.120833_br0020","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13024-023-00595-7","article-title":"The gut microbiome in alzheimers disease: what we know and what remains to be explored","volume":"18","author":"Chandra","year":"2023","journal-title":"Mol. Neurodegener."},{"issue":"5","key":"10.1016\/j.ins.2024.120833_br0030","article-title":"Genetic associations between modifiable risk factors and Alzheimer disease","volume":"6","author":"Luo","year":"2023","journal-title":"JAMA Netw. Open"},{"issue":"1","key":"10.1016\/j.ins.2024.120833_br0040","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1001\/jamaneurol.2023.4596","article-title":"Plasma biomarker strategy for selecting patients with Alzheimer disease for antiamyloid immunotherapies","volume":"81","author":"Mattsson-Carlgren","year":"2024","journal-title":"JAMA Neurol."},{"issue":"4","key":"10.1016\/j.ins.2024.120833_br0050","doi-asserted-by":"crossref","first-page":"360","DOI":"10.1001\/jamaneurol.2022.5272","article-title":"Prediction of longitudinal cognitive decline in preclinical Alzheimer disease using plasma biomarkers","volume":"80","author":"Mattsson-Carlgren","year":"2023","journal-title":"JAMA Neurol."},{"issue":"1","key":"10.1016\/j.ins.2024.120833_br0060","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1038\/s43856-023-00262-4","article-title":"Mri-based deep learning can discriminate between temporal lobe epilepsy, Alzheimer s disease, and healthy controls","volume":"3","author":"Chang","year":"2023","journal-title":"Commun. Med."},{"key":"10.1016\/j.ins.2024.120833_br0070","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.aej.2022.07.062","article-title":"An mri-based deep learning approach for accurate detection of Alzheimer s disease","volume":"63","author":"Marwa","year":"2023","journal-title":"Alex. Eng. J."},{"key":"10.1016\/j.ins.2024.120833_br0080","article-title":"Multiclass diagnosis of Alzheimer s disease analysis using machine learning and deep learning techniques","author":"Begum","year":"2023","journal-title":"Int. J. Image Graph."},{"key":"10.1016\/j.ins.2024.120833_br0090","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2022.107291","article-title":"Vgg-tswinformer: transformer-based deep learning model for early Alzheimer s disease prediction","volume":"229","author":"Hu","year":"2023","journal-title":"Comput. Methods Programs Biomed."},{"issue":"1","key":"10.1016\/j.ins.2024.120833_br0100","first-page":"451","article-title":"A novel automated deep learning approach for Alzheimer's disease classification","volume":"12","author":"Aparna","year":"2023","journal-title":"IAES Int. J. Artif. Intell."},{"issue":"01","key":"10.1016\/j.ins.2024.120833_br0110","article-title":"Implementation of convolutional neural networks for detection of alzheimers disease","volume":"12","author":"Ganesh","year":"2023","journal-title":"BioGecko, A J. New Zealand Herpetol."},{"key":"10.1016\/j.ins.2024.120833_br0120","doi-asserted-by":"crossref","DOI":"10.1016\/j.neubiorev.2024.105549","article-title":"Connecting the dots: insulin resistance and mental health","volume":"158","author":"Hanssen","year":"2024","journal-title":"Neurosci. Biobehav. Rev."},{"issue":"6","key":"10.1016\/j.ins.2024.120833_br0130","doi-asserted-by":"crossref","first-page":"17729","DOI":"10.1007\/s11042-023-16256-2","article-title":"Analysis of mri image data for Alzheimer disease detection using deep learning techniques","volume":"83","author":"Pradhan","year":"2024","journal-title":"Multimed. Tools Appl."},{"key":"10.1016\/j.ins.2024.120833_br0140","first-page":"1","article-title":"Deep learning and image processing-based early detection of Alzheimer disease in cognitively normal individuals","author":"Borkar","year":"2023","journal-title":"Soft Comput."},{"key":"10.1016\/j.ins.2024.120833_br0150","series-title":"International Conference on Communications and Cyber Physical Engineering 2018","first-page":"71","article-title":"Early detection of Alzheimer's disease using medical imaging: a review of intelligent approaches","author":"Naveen","year":"2024"},{"key":"10.1016\/j.ins.2024.120833_br0160","series-title":"Intelligent Systems and Applications: Proceedings of the 2020 Intelligent Systems Conference (IntelliSys), vol. 3","first-page":"482","article-title":"Alzheimer disease prediction model based on decision fusion of cnn-bilstm deep neural networks","author":"El-Sappagh","year":"2021"},{"key":"10.1016\/j.ins.2024.120833_br0170","series-title":"Proceedings of the 14th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2022)","first-page":"285","article-title":"Deep convolutional neural network model for classifying Alzheimer s disease","author":"Shanthakumari","year":"2023"},{"key":"10.1016\/j.ins.2024.120833_br0180","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1016\/j.neunet.2023.04.018","article-title":"Prospective classification of Alzheimer s disease conversion from mild cognitive impairment","volume":"164","author":"Park","year":"2023","journal-title":"Neural Netw."},{"key":"10.1016\/j.ins.2024.120833_br0190","first-page":"1","article-title":"Alzheimer disease classification using tawny flamingo based deep convolutional neural networks via federated learning","author":"Mandawkar","year":"2023","journal-title":"Imaging Sci. J."},{"key":"10.1016\/j.ins.2024.120833_br0200","series-title":"2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)","first-page":"1362","article-title":"Fair and privacy-preserving Alzheimer's disease diagnosis based on spontaneous speech analysis via federated learning","author":"Meerza","year":"2022"},{"issue":"11","key":"10.1016\/j.ins.2024.120833_br0210","doi-asserted-by":"crossref","first-page":"5665","DOI":"10.1109\/JBHI.2022.3197331","article-title":"An attention-based 3d cnn with multi-scale integration block for Alzheimer's disease classification","volume":"26","author":"Wu","year":"2022","journal-title":"IEEE J. Biomed. Health Inform."},{"issue":"10","key":"10.1016\/j.ins.2024.120833_br0220","doi-asserted-by":"crossref","first-page":"4995","DOI":"10.1109\/JBHI.2022.3215533","article-title":"Conv-ervfl: convolutional neural network based ensemble rvfl classifier for Alzheimer's disease diagnosis","volume":"27","author":"Sharma","year":"2022","journal-title":"IEEE J. Biomed. Health Inform."},{"issue":"3","key":"10.1016\/j.ins.2024.120833_br0230","doi-asserted-by":"crossref","first-page":"5005","DOI":"10.32604\/cmc.2022.020866","article-title":"Alzheimer disease detection empowered with transfer learning","volume":"70","author":"Ghazal","year":"2022","journal-title":"Comput. Mater. Continua"},{"issue":"4","key":"10.1016\/j.ins.2024.120833_br0240","doi-asserted-by":"crossref","first-page":"258","DOI":"10.1016\/j.irbm.2020.06.006","article-title":"Deep convolution neural network based system for early diagnosis of Alzheimer's disease","volume":"42","author":"Janghel","year":"2021","journal-title":"IRBM"},{"issue":"2","key":"10.1016\/j.ins.2024.120833_br0250","doi-asserted-by":"crossref","DOI":"10.1016\/j.heliyon.2021.e06226","article-title":"Hippocampus segmentation on epilepsy and Alzheimer's disease studies with multiple convolutional neural networks","volume":"7","author":"Carmo","year":"2021","journal-title":"Heliyon"},{"key":"10.1016\/j.ins.2024.120833_br0260","series-title":"2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)","first-page":"4409","article-title":"Multimodal data fusion of deep learning and dynamic functional connectivity features to predict Alzheimer s disease progression","author":"Abrol","year":"2019"},{"issue":"1","key":"10.1016\/j.ins.2024.120833_br0270","doi-asserted-by":"crossref","first-page":"3254","DOI":"10.1038\/s41598-020-74399-w","article-title":"Multimodal deep learning models for early detection of Alzheimer s disease stage","volume":"11","author":"Venugopalan","year":"2021","journal-title":"Sci. Rep."},{"key":"10.1016\/j.ins.2024.120833_br0280","doi-asserted-by":"crossref","first-page":"680","DOI":"10.1016\/j.future.2020.10.005","article-title":"Alzheimer s disease progression detection model based on an early fusion of cost-effective multimodal data","volume":"115","author":"El-Sappagh","year":"2021","journal-title":"Future Gener. Comput. Syst."},{"key":"10.1016\/j.ins.2024.120833_br0290","series-title":"2021 IEEE International Conference on Data Mining (ICDM)","first-page":"1270","article-title":"Multi-classification prediction of Alzheimer s disease based on fusing multi-modal features","author":"Pan","year":"2021"},{"key":"10.1016\/j.ins.2024.120833_br0300","doi-asserted-by":"crossref","DOI":"10.1016\/j.jneumeth.2020.108795","article-title":"Multi-modal neuroimaging feature fusion for diagnosis of Alzheimer s disease","volume":"341","author":"Zhang","year":"2020","journal-title":"J. Neurosci. Methods"},{"key":"10.1016\/j.ins.2024.120833_br0310","doi-asserted-by":"crossref","DOI":"10.3389\/fdgth.2021.637386","article-title":"An effective multimodal image fusion method using mri and pet for Alzheimer's disease diagnosis","volume":"3","author":"Song","year":"2021","journal-title":"Front. Digit. Health"},{"issue":"6","key":"10.1016\/j.ins.2024.120833_br0320","doi-asserted-by":"crossref","first-page":"781","DOI":"10.2174\/1386207323666200825092649","article-title":"Diagnosis of Alzheimer's disease based on deeply-fused nets","volume":"24","author":"Chen","year":"2021","journal-title":"Comb. Chem. High Throughput Screen."},{"key":"10.1016\/j.ins.2024.120833_br0330","doi-asserted-by":"crossref","first-page":"238","DOI":"10.3389\/fnagi.2020.00238","article-title":"Classification and graphical analysis of Alzheimer s disease and its prodromal stage using multimodal features from structural, diffusion, and functional neuroimaging data and the apoe genotype","volume":"12","author":"Gupta","year":"2020","journal-title":"Front. Aging Neurosci."},{"issue":"1","key":"10.1016\/j.ins.2024.120833_br0340","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-021-82098-3","article-title":"A multilayer multimodal detection and prediction model based on explainable artificial intelligence for alzheimers disease","volume":"11","author":"El-Sappagh","year":"2021","journal-title":"Sci. Rep."},{"key":"10.1016\/j.ins.2024.120833_br0350","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1016\/j.inffus.2020.09.002","article-title":"Alzheimers disease multiclass diagnosis via multimodal neuroimaging embedding feature selection and fusion","volume":"66","author":"Zhang","year":"2021","journal-title":"Inf. Fusion"},{"issue":"10","key":"10.1016\/j.ins.2024.120833_br0360","doi-asserted-by":"crossref","first-page":"289","DOI":"10.3390\/brainsci9100289","article-title":"Computer-aided diagnosis system of Alzheimer s disease based on multimodal fusion: tissue quantification based on the hybrid fuzzy-genetic-possibilistic model and discriminative classification based on the svdd model","volume":"9","author":"Lazli","year":"2019","journal-title":"Brain Sci."},{"key":"10.1016\/j.ins.2024.120833_br0370","doi-asserted-by":"crossref","first-page":"347","DOI":"10.1016\/j.jconrel.2020.01.039","article-title":"A dual-ligand fusion peptide improves the brain-neuron targeting of nanocarriers in Alzheimer's disease mice","volume":"320","author":"Guo","year":"2020","journal-title":"J. Control. Release"},{"issue":"1","key":"10.1016\/j.ins.2024.120833_br0380","doi-asserted-by":"crossref","first-page":"7065","DOI":"10.1038\/s41467-021-26703-z","article-title":"A deep learning framework identifies dimensional representations of Alzheimer s disease from brain structure","volume":"12","author":"Yang","year":"2021","journal-title":"Nat. Commun."},{"issue":"9","key":"10.1016\/j.ins.2024.120833_br0390","doi-asserted-by":"crossref","first-page":"2187","DOI":"10.1038\/s41591-023-02505-2","article-title":"Emerging diagnostics and therapeutics for Alzheimer disease","volume":"29","author":"Self","year":"2023","journal-title":"Nat. Med."},{"key":"10.1016\/j.ins.2024.120833_br0400","doi-asserted-by":"crossref","first-page":"173","DOI":"10.59543\/ijmscs.v2i.8915","article-title":"A comprehensive review on advancements in artificial intelligence approaches and future perspectives for early diagnosis of Parkinson's disease","volume":"2","author":"Ibrahim","year":"2024","journal-title":"Int. J. Math. Stat. Comput. Sci."},{"issue":"1","key":"10.1016\/j.ins.2024.120833_br0410","doi-asserted-by":"crossref","first-page":"751","DOI":"10.3390\/ijms24010751","article-title":"Functional correlates of striatal dopamine transporter cerebrospinal fluid levels in Alzheimer s disease: a preliminary 18f-fdg pet\/ct study","volume":"24","author":"Camedda","year":"2023","journal-title":"Int. J. Mol. Sci."},{"issue":"4","key":"10.1016\/j.ins.2024.120833_br0420","doi-asserted-by":"crossref","first-page":"1880","DOI":"10.1007\/s00415-022-11518-9","article-title":"Awareness impairment in Alzheimer s disease and frontotemporal dementia: a systematic mri review","volume":"270","author":"Leocadi","year":"2023","journal-title":"J. Neurol."},{"issue":"1","key":"10.1016\/j.ins.2024.120833_br0430","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1111\/psyg.12915","article-title":"Involvement of inflammation in the medial temporal region in the development of agitation in Alzheimer's disease: an in vivo positron emission tomography study","volume":"23","author":"Yasuno","year":"2023","journal-title":"Psychogeriatrics"},{"issue":"4","key":"10.1016\/j.ins.2024.120833_br0440","doi-asserted-by":"crossref","first-page":"1175","DOI":"10.1002\/alz.12754","article-title":"Using Alzheimer's disease blood tests to accelerate clinical trial enrollment","volume":"19","author":"Schindler","year":"2023","journal-title":"Alzheimer's Dement."},{"issue":"1","key":"10.1016\/j.ins.2024.120833_br0450","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1038\/s41582-022-00749-z","article-title":"Synaptic degeneration in Alzheimer disease","volume":"19","author":"Tzioras","year":"2023","journal-title":"Nat. Rev. Neurol."},{"issue":"1","key":"10.1016\/j.ins.2024.120833_br0460","article-title":"Designing and building secure electronic medical record application by applying aes-256 and rsa digital signature","volume":"852","author":"Mukti","year":"2020","journal-title":"IOP Conf. Ser., Mater. Sci. Eng."},{"key":"10.1016\/j.ins.2024.120833_br0470","series-title":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","first-page":"288","article-title":"Enhanced Arnold s cat map-aes encryption technique for medical images","author":"Shalaby","year":"2020"},{"key":"10.1016\/j.ins.2024.120833_br0480","series-title":"2019 International Electronics Symposium (IES)","first-page":"214","article-title":"Design an mvc model using python for flask framework development","author":"Mufid","year":"2019"},{"year":"2019","series-title":"Python API Development Fundamentals: Develop a Full-Stack Web Application with Python and Flask","author":"Chan","key":"10.1016\/j.ins.2024.120833_br0490"},{"issue":"2","key":"10.1016\/j.ins.2024.120833_br0500","doi-asserted-by":"crossref","DOI":"10.29333\/iejme\/6440","article-title":"The Newton fractal s leonardo sequence study with the Google colab","volume":"15","author":"Alves","year":"2019","journal-title":"Int. Electron. J. Math. Educ."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524007473?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524007473?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,19]],"date-time":"2024-12-19T21:19:10Z","timestamp":1734643150000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025524007473"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":50,"alternative-id":["S0020025524007473"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2024.120833","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"FDCNN-AS: Federated deep convolutional neural network Alzheimer detection schemes for different age groups","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2024.120833","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Author(s). Published by Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"120833"}}