{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:40:24Z","timestamp":1740112824435,"version":"3.37.3"},"reference-count":32,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,4,8]],"date-time":"2024-04-08T00:00:00Z","timestamp":1712534400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100002920","name":"Research Grants Council, University Grants Committee","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002920","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004052","name":"King Abdullah University of Science and Technology","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004052","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000923","name":"Australian Research Council","doi-asserted-by":"publisher","award":["DP240101919"],"id":[{"id":"10.13039\/501100000923","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2024,6]]},"DOI":"10.1016\/j.ins.2024.120573","type":"journal-article","created":{"date-parts":[[2024,4,10]],"date-time":"2024-04-10T15:13:28Z","timestamp":1712762008000},"page":"120573","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Approximation of functions from Korobov spaces by shallow neural networks"],"prefix":"10.1016","volume":"670","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-6227-585X","authenticated-orcid":false,"given":"Yuqing","family":"Liu","sequence":"first","affiliation":[]},{"given":"Tong","family":"Mao","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0224-9216","authenticated-orcid":false,"given":"Ding-Xuan","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2024.120573_br0010","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1017\/S0962492904000182","article-title":"Sparse grids","volume":"13","author":"Bungartz","year":"2004","journal-title":"Acta Numer."},{"key":"10.1016\/j.ins.2024.120573_br0020","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1007\/BF02392815","article-title":"On convergence and growth of partial sums of Fourier series","volume":"116","author":"Carleson","year":"1966","journal-title":"Acta Math."},{"key":"10.1016\/j.ins.2024.120573_br0030","series-title":"Computing Science and Statistics, Proc. of the 22nd Symposium on Interface","first-page":"163","article-title":"A constructive proof of Cybenko's approximation theorem and its extensions","author":"Chen","year":"1990"},{"key":"10.1016\/j.ins.2024.120573_br0040","doi-asserted-by":"crossref","first-page":"910","DOI":"10.1109\/72.286886","article-title":"Approximation to continuous functionals by neural networks with application to dynamical systems","volume":"4","author":"Chen","year":"1993","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.ins.2024.120573_br0050","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1109\/72.363453","article-title":"Approximation capability in C(Rn) by multilayer feedforward networks and related problems","volume":"6","author":"Chen","year":"1995","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.ins.2024.120573_br0060","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1090\/S0025-5718-1994-1240656-2","article-title":"Neural networks for localized approximation","volume":"63","author":"Chui","year":"1994","journal-title":"Math. Comput."},{"key":"10.1016\/j.ins.2024.120573_br0070","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1109\/TNNLS.2020.3027613","article-title":"Realization of spatial sparseness by deep ReLU nets with massive data","volume":"33","author":"Chui","year":"2022","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ins.2024.120573_br0080","doi-asserted-by":"crossref","first-page":"737","DOI":"10.1142\/S0219530519400074","article-title":"Deep neural networks for rotation-invariance approximation and learning","volume":"17","author":"Chui","year":"2019","journal-title":"Anal. Appl."},{"key":"10.1016\/j.ins.2024.120573_br0090","doi-asserted-by":"crossref","first-page":"46","DOI":"10.3389\/fams.2019.00046","article-title":"Deep net tree structure for balance of capacity and approximation ability","volume":"5","author":"Chui","year":"2019","journal-title":"Front. Appl. Math. Stat."},{"year":"2007","series-title":"Learning Theory: an Approximation Theory Viewpoint","author":"Cucker","key":"10.1016\/j.ins.2024.120573_br0100"},{"key":"10.1016\/j.ins.2024.120573_br0110","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1007\/BF02551274","article-title":"Approximation by superpositions of a sigmoidal function","volume":"2","author":"Cybenko","year":"1989","journal-title":"Math. Control Signals Syst."},{"year":"1993","series-title":"Constructive Approximation","author":"DeVore","key":"10.1016\/j.ins.2024.120573_br0120"},{"key":"10.1016\/j.ins.2024.120573_br0130","doi-asserted-by":"crossref","first-page":"744","DOI":"10.1090\/S0002-9904-1971-12793-3","article-title":"On the convergence of multiple Fourier series","volume":"77","author":"Fefferman","year":"1971","journal-title":"Bull. Am. Math. Soc."},{"key":"10.1016\/j.ins.2024.120573_br0140","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1142\/S0219530517500026","article-title":"Thresholded spectral algorithms for sparse approximations","volume":"15","author":"Guo","year":"2017","journal-title":"Anal. Appl."},{"key":"10.1016\/j.ins.2024.120573_br0150","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/0893-6080(89)90020-8","article-title":"Multilayer feedforward networks are universal approximators","volume":"2","author":"Hornik","year":"1989","journal-title":"Neural Netw."},{"key":"10.1016\/j.ins.2024.120573_br0160","doi-asserted-by":"crossref","first-page":"7649","DOI":"10.1109\/TIT.2018.2874447","article-title":"Approximation by combinations of ReLU and squared ReLU ridge functions with \u21131 and \u21130 controls","volume":"64","author":"Klusowski","year":"2018","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"4","key":"10.1016\/j.ins.2024.120573_br0170","first-page":"3","article-title":"On the definition of an algorithm","volume":"13","author":"Kolmogorov","year":"1958","journal-title":"Usp. Mat. Nauk"},{"key":"10.1016\/j.ins.2024.120573_br0180","doi-asserted-by":"crossref","DOI":"10.1016\/j.jco.2023.101784","article-title":"Rates of approximation by ReLU shallow neural networks","volume":"79","author":"Mao","year":"2023","journal-title":"J. Complex."},{"issue":"6","key":"10.1016\/j.ins.2024.120573_br0190","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1007\/s10444-022-09991-x","article-title":"Approximation of functions from Korobov spaces by deep convolutional neural networks","volume":"48","author":"Mao","year":"2022","journal-title":"Adv. Comput. Math."},{"key":"10.1016\/j.ins.2024.120573_br0200","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1007\/BF02070821","article-title":"Approximation properties of a multilayered feedforward artificial neural network","volume":"1","author":"Mhaskar","year":"1993","journal-title":"Adv. Comput. Math."},{"key":"10.1016\/j.ins.2024.120573_br0210","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1137\/18M1189336","article-title":"New error bounds for deep ReLU networks using sparse grids","volume":"1","author":"Montanelli","year":"2019","journal-title":"SIAM J. Math. Data Sci."},{"key":"10.1016\/j.ins.2024.120573_br0220","doi-asserted-by":"crossref","first-page":"296","DOI":"10.1016\/j.neunet.2018.08.019","article-title":"Optimal approximation of piecewise smooth functions using deep ReLU neural networks","volume":"108","author":"Petersen","year":"2018","journal-title":"Neural Netw."},{"key":"10.1016\/j.ins.2024.120573_br0230","doi-asserted-by":"crossref","first-page":"861","DOI":"10.1016\/S0893-6080(05)80131-5","article-title":"Multilayer feedforward networks with a nonpolynomial activation function can approximate any function","volume":"6","author":"Pinkus","year":"1993","journal-title":"Neural Netw."},{"key":"10.1016\/j.ins.2024.120573_br0240","first-page":"1875","article-title":"Nonparametric regression using deep neural networks with ReLU activation function","volume":"48","author":"Schmidt-Hieber","year":"2020","journal-title":"Ann. Stat."},{"key":"10.1016\/j.ins.2024.120573_br0250","first-page":"1","article-title":"Sharp bounds on the approximation rates, metric entropy, and n-widths of shallow neural networks","author":"Siegel","year":"2022","journal-title":"Found. Comput. Math."},{"key":"10.1016\/j.ins.2024.120573_br0260","doi-asserted-by":"crossref","first-page":"537","DOI":"10.1016\/j.acha.2016.04.003","article-title":"Provable approximation properties for deep neural networks","volume":"44","author":"Shaham","year":"2018","journal-title":"Appl. Comput. Harmon. Anal."},{"key":"10.1016\/j.ins.2024.120573_br0270","article-title":"Singular Integrals and Differentiability Properties of Functions","volume":"vol. 30","author":"Stein","year":"2016"},{"key":"10.1016\/j.ins.2024.120573_br0280","series-title":"Proceedings of the International Conference on Learning Representations (ICLR)","article-title":"Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality","author":"Suzuki","year":"2019"},{"key":"10.1016\/j.ins.2024.120573_br0290","doi-asserted-by":"crossref","first-page":"567","DOI":"10.1070\/IM1981v017n03ABEH001372","article-title":"Absolute convergence of Fourier integrals, summability of Fourier series and polynomial approximation of functions on the torus","volume":"17","author":"Trigub","year":"1981","journal-title":"Math. USSR, Izv."},{"key":"10.1016\/j.ins.2024.120573_br0300","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.neunet.2017.07.002","article-title":"Error bounds for approximations with deep ReLU networks","volume":"94","author":"Yarotsky","year":"2017","journal-title":"Neural Netw."},{"key":"10.1016\/j.ins.2024.120573_br0310","doi-asserted-by":"crossref","first-page":"895","DOI":"10.1142\/S0219530518500124","article-title":"Deep distributed convolutional neural networks: universality","volume":"16","author":"Zhou","year":"2018","journal-title":"Anal. Appl."},{"key":"10.1016\/j.ins.2024.120573_br0320","doi-asserted-by":"crossref","first-page":"739","DOI":"10.1006\/jcom.2002.0635","article-title":"The covering number in learning theory","volume":"18","author":"Zhou","year":"2002","journal-title":"J. Complex."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524004869?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524004869?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,3]],"date-time":"2024-05-03T08:03:30Z","timestamp":1714723410000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025524004869"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,6]]},"references-count":32,"alternative-id":["S0020025524004869"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2024.120573","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2024,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Approximation of functions from Korobov spaces by shallow neural networks","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2024.120573","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Author(s). Published by Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"120573"}}