{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,8]],"date-time":"2024-11-08T06:10:03Z","timestamp":1731046203638,"version":"3.28.0"},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61702168","62002106","62072134","U2001205"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002948","name":"Hubei University of Technology","doi-asserted-by":"publisher","award":["XJ2021000901"],"id":[{"id":"10.13039\/501100002948","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2024,3]]},"DOI":"10.1016\/j.ins.2024.120131","type":"journal-article","created":{"date-parts":[[2024,1,17]],"date-time":"2024-01-17T09:40:50Z","timestamp":1705484450000},"page":"120131","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["L-Net: A lightweight convolutional neural network for devices with low computing power"],"prefix":"10.1016","volume":"660","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8409-0960","authenticated-orcid":false,"given":"Hua","family":"Shen","sequence":"first","affiliation":[]},{"given":"Zhiwei","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Jixin","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8551-8826","authenticated-orcid":false,"given":"Mingwu","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2024.120131_br0020","series-title":"Biometric Recognition: 13th Chinese Conference, CCBR 2018, Urumqi, China, August 11-12, 2018, Proceedings 13","first-page":"428","article-title":"Mobilefacenets: efficient cnns for accurate real-time face verification on mobile devices","author":"Chen","year":"2018"},{"key":"10.1016\/j.ins.2024.120131_br0370","article-title":"Recognition of small targets in remote sensing image using multi-scale fea ture fusion-based shot multi-box detector","volume":"011","author":"Chen","year":"2021","journal-title":"Opt. Precis. Eng."},{"issue":"1","key":"10.1016\/j.ins.2024.120131_br0030","doi-asserted-by":"crossref","first-page":"967","DOI":"10.1007\/s10489-021-02445-9","article-title":"Data augmentation for thermal infrared object detection with cascade pyramid generative adversarial network","volume":"52","author":"Dai","year":"2022","journal-title":"Appl. Intell."},{"key":"10.1016\/j.ins.2024.120131_br0040","series-title":"2009 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"248","article-title":"Imagenet: a large-scale hierarchical image database","author":"Deng","year":"2009"},{"key":"10.1016\/j.ins.2024.120131_br0060","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1007\/s11263-009-0275-4","article-title":"The pascal visual object classes (voc) challenge","volume":"88","author":"Everingham","year":"2010","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.ins.2024.120131_br0080","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"7036","article-title":"Learning scalable feature pyramid architecture for object detection","author":"Ghiasi","year":"2019"},{"key":"10.1016\/j.ins.2024.120131_br0090","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"1440","article-title":"Fast r-cnn","author":"Girshick","year":"2015"},{"key":"10.1016\/j.ins.2024.120131_br0100","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"580","article-title":"Rich feature hierarchies for accurate object detection and semantic segmentation","author":"Girshick","year":"2014"},{"issue":"9","key":"10.1016\/j.ins.2024.120131_br0110","doi-asserted-by":"crossref","first-page":"1904","DOI":"10.1109\/TPAMI.2015.2389824","article-title":"Spatial pyramid pooling in deep convolutional networks for visual recognition","volume":"37","author":"He","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2024.120131_br0120","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"author":"Howard","key":"10.1016\/j.ins.2024.120131_br0130"},{"key":"10.1016\/j.ins.2024.120131_br0140","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"4700","article-title":"Densely connected convolutional networks","author":"Huang","year":"2017"},{"key":"10.1016\/j.ins.2024.120131_br0150","doi-asserted-by":"crossref","unstructured":"H. Huang, L. Lin, R. Tong, H. Hu, J. Wu, Unet 3+: A full-scale connected unet for medical image segmentation, arXiv, 2020.","DOI":"10.1109\/ICASSP40776.2020.9053405"},{"issue":"3","key":"10.1016\/j.ins.2024.120131_br0200","article-title":"Improved lightweight convolutional networks for classification of grape dis eased leaves","volume":"28","author":"Huang","year":"2023","journal-title":"J. Harbin Univ. Sci. Technol."},{"author":"Iandola","key":"10.1016\/j.ins.2024.120131_br0160"},{"key":"10.1016\/j.ins.2024.120131_br0170","series-title":"Handbook of Systemic Autoimmune Diseases, vol. 1(4)","first-page":"32","article-title":"Learning multiple layers of features from tiny images","author":"Krizhevsky","year":"2009"},{"issue":"6","key":"10.1016\/j.ins.2024.120131_br0180","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1145\/3065386","article-title":"Imagenet classification with deep convolutional neural networks","volume":"60","author":"Krizhevsky","year":"2017","journal-title":"Commun. ACM"},{"issue":"11","key":"10.1016\/j.ins.2024.120131_br0220","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","article-title":"Gradient-based learning applied to document recognition","volume":"86","author":"LeCun","year":"1998","journal-title":"Proc. IEEE"},{"issue":"4","key":"10.1016\/j.ins.2024.120131_br0190","first-page":"593","article-title":"Detection and identification of crop leaf diseases based on improved yolox-nano","volume":"44","author":"Li","year":"2023","journal-title":"J. South China Agricult. Univ."},{"issue":"9","key":"10.1016\/j.ins.2024.120131_br0390","article-title":"Target detection algorithm of remote sensing image based on improved yolov5","volume":"59","author":"Li","year":"2023","journal-title":"J. Comput. Eng. Appl."},{"key":"10.1016\/j.ins.2024.120131_br0260","article-title":"Building extraction of high-resolution remote sensing imagery on optimized mask rcnn","volume":"003","author":"Lin","year":"2022","journal-title":"Remote Sens. Inf."},{"issue":"4","key":"10.1016\/j.ins.2024.120131_br0240","doi-asserted-by":"crossref","DOI":"10.37188\/CJLCD.2022-0229","article-title":"Martian image classification based on iterative pruning vggne","volume":"38","author":"Liu","year":"2023","journal-title":"Chin. J. Liquid Crystal Displays"},{"key":"10.1016\/j.ins.2024.120131_br0230","series-title":"Computer Vision\u2013ECCV 2016: 14th European Conference, Amsterdam, the Netherlands, October 11\u201314, 2016, Proceedings, Part i 14","first-page":"21","article-title":"Single shot multibox detector","author":"Liu","year":"2016"},{"issue":"7","key":"10.1016\/j.ins.2024.120131_br0210","first-page":"187","article-title":"Classification and recognition of tomato leaf diseases based on deep learning","volume":"44","author":"Ma","year":"2023","journal-title":"J. Chin. Agricult. Mech."},{"key":"10.1016\/j.ins.2024.120131_br0250","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","first-page":"116","article-title":"Shufflenet v2: practical guidelines for efficient cnn architecture design","author":"Ma","year":"2018"},{"key":"10.1016\/j.ins.2024.120131_br0280","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"779","article-title":"You only look once: unified, real-time object detection","author":"Redmon","year":"2016"},{"key":"10.1016\/j.ins.2024.120131_br0290","article-title":"Faster r-cnn: towards real-time object detection with region proposal networks","volume":"28","author":"Ren","year":"2015","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"2018","series-title":"Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation","author":"Sandler","key":"10.1016\/j.ins.2024.120131_br0300"},{"author":"Simonyan","key":"10.1016\/j.ins.2024.120131_br0310"},{"author":"Studio","key":"10.1016\/j.ins.2024.120131_br0320"},{"key":"10.1016\/j.ins.2024.120131_br0330","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1","article-title":"Going deeper with convolutions","author":"Szegedy","year":"2015"},{"key":"10.1016\/j.ins.2024.120131_br0340","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"10781","article-title":"Scalable and efficient object detection","author":"Tan","year":"2020"},{"key":"10.1016\/j.ins.2024.120131_br0350","series-title":"International Conference on Machine Learning","first-page":"6105","article-title":"Efficientnet: rethinking model scaling for convolutional neural networks","author":"Tan","year":"2019"},{"key":"10.1016\/j.ins.2024.120131_br0360","article-title":"Pelee: a real-time object detection system on mobile devices","volume":"31","author":"Wang","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"journal-title":"Trans. Chin. Soc. Agricult. Mach.","article-title":"Tomato leaf dis ease recognition based on wgan and mca-mobilenet","year":"2023","author":"Wang","key":"10.1016\/j.ins.2024.120131_br0270"},{"key":"10.1016\/j.ins.2024.120131_br0380","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"3825","article-title":"Mobiledets: searching for object detection architectures for mobile accelerators","author":"Xiong","year":"2021"},{"journal-title":"J. Chin. Agricult. Mech.","article-title":"Identification and detection of rice leaf diseases by yolov5 neural network based on improved spp-x","year":"2023","author":"Yang","key":"10.1016\/j.ins.2024.120131_br0010"},{"article-title":"Lightseg: a light-weight network for real-time semantic segmentation","year":"2021","series-title":"International Conference on Digital Image Processing","author":"Ye","key":"10.1016\/j.ins.2024.120131_br0400"},{"issue":"4","key":"10.1016\/j.ins.2024.120131_br0050","first-page":"13","article-title":"Glacier identification from remote sensing image with shadows using an improved u-net convolutional network","volume":"30","author":"Zhang","year":"2022","journal-title":"J. Basic Sci. Eng."},{"issue":"2","key":"10.1016\/j.ins.2024.120131_br0410","doi-asserted-by":"crossref","first-page":"380","DOI":"10.1109\/TMM.2019.2929005","article-title":"Widerperson: a diverse dataset for dense pedestrian detection in the wild","volume":"22","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.ins.2024.120131_br0420","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"6848","article-title":"Shufflenet: an extremely efficient convolutional neural network for mobile devices","author":"Zhang","year":"2018"},{"issue":"1","key":"10.1016\/j.ins.2024.120131_br0430","doi-asserted-by":"crossref","first-page":"180","DOI":"10.3390\/rs14010180","article-title":"Sar target detection based on improved ssd with saliency map and residual network","volume":"14","author":"Zhou","year":"2022","journal-title":"Remote Sens."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524000446?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025524000446?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,8]],"date-time":"2024-11-08T05:56:23Z","timestamp":1731045383000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025524000446"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3]]},"references-count":42,"alternative-id":["S0020025524000446"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2024.120131","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2024,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"L-Net: A lightweight convolutional neural network for devices with low computing power","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2024.120131","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"120131"}}