{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:40:07Z","timestamp":1740112807344,"version":"3.37.3"},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2023YFB2703700"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62176269"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004000","name":"Guangzhou Municipal Science and Technology Program key projects","doi-asserted-by":"publisher","award":["2023A04J0314"],"id":[{"id":"10.13039\/501100004000","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2024,2]]},"DOI":"10.1016\/j.ins.2023.120024","type":"journal-article","created":{"date-parts":[[2023,12,22]],"date-time":"2023-12-22T16:17:40Z","timestamp":1703261860000},"page":"120024","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["A neural tensor decomposition model for high-order sparse data recovery"],"prefix":"10.1016","volume":"658","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-7046-1422","authenticated-orcid":false,"given":"Tianchi","family":"Liao","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8207-094X","authenticated-orcid":false,"given":"Jinghua","family":"Yang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7048-3445","authenticated-orcid":false,"given":"Chuan","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Zibin","family":"Zheng","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.ins.2023.120024_br0010","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1137\/07070111X","article-title":"Tensor decompositions and applications","volume":"51","author":"Kolda","year":"2009","journal-title":"SIAM Rev."},{"issue":"402","key":"10.1016\/j.ins.2023.120024_br0020","first-page":"3","article-title":"Tensors: geometry and applications","volume":"381","author":"Landsberg","year":"2012","journal-title":"Represent. Theory"},{"issue":"1","key":"10.1016\/j.ins.2023.120024_br0030","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1109\/TPAMI.2012.39","article-title":"Tensor completion for estimating missing values in visual data","volume":"35","author":"Liu","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"13","key":"10.1016\/j.ins.2023.120024_br0040","doi-asserted-by":"crossref","first-page":"3551","DOI":"10.1109\/TSP.2017.2690524","article-title":"Tensor decomposition for signal processing and machine learning","volume":"65","author":"Sidiropoulos","year":"2017","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.ins.2023.120024_br0050","series-title":"2008 Eighth IEEE International Conference on Data Mining","first-page":"363","article-title":"Scalable tensor decompositions for multi-aspect data mining","author":"Kolda","year":"2008"},{"key":"10.1016\/j.ins.2023.120024_br0060","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"5996","article-title":"Low-rank tensor completion with a new tensor nuclear norm induced by invertible linear transforms","author":"Lu","year":"2019"},{"issue":"3","key":"10.1016\/j.ins.2023.120024_br0070","first-page":"909","article-title":"Coupled graphs and tensor factorization for recommender systems and community detection","volume":"33","author":"Ioannidis","year":"2019","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2023.120024_br0080","series-title":"Proceedings of the Web Conference 2020","first-page":"1104","article-title":"Generalizing tensor decomposition for n-ary relational knowledge bases","author":"Liu","year":"2020"},{"issue":"3","key":"10.1016\/j.ins.2023.120024_br0090","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1007\/BF02310791","article-title":"Analysis of individual differences in multidimensional scaling via an n-way generalization of \u201cEckart-Young\u201d decomposition","volume":"35","author":"Carroll","year":"1970","journal-title":"Psychometrika"},{"issue":"3","key":"10.1016\/j.ins.2023.120024_br0100","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1007\/BF02289464","article-title":"Some mathematical notes on three-mode factor analysis","volume":"31","author":"Tucker","year":"1966","journal-title":"Psychometrika"},{"issue":"3","key":"10.1016\/j.ins.2023.120024_br0110","doi-asserted-by":"crossref","first-page":"1084","DOI":"10.1137\/06066518X","article-title":"Tensor rank and the ill-posedness of the best low-rank approximation problem","volume":"30","author":"De Silva","year":"2008","journal-title":"SIAM J. Matrix Anal. Appl."},{"key":"10.1016\/j.ins.2023.120024_br0120","series-title":"Proc. AAAI","first-page":"11071","article-title":"Fully-connected tensor network decomposition and its application to higher-order tensor completion","volume":"vol. 35","author":"Zheng","year":"2021"},{"key":"10.1016\/j.ins.2023.120024_br0130","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.aop.2014.06.013","article-title":"A practical introduction to tensor networks: matrix product states and projected entangled pair states","volume":"349","author":"Or\u00fas","year":"2014","journal-title":"Ann. Phys."},{"issue":"2","key":"10.1016\/j.ins.2023.120024_br0140","doi-asserted-by":"crossref","first-page":"750","DOI":"10.1016\/j.laa.2011.12.019","article-title":"Computations in quantum tensor networks","volume":"438","author":"Huckle","year":"2013","journal-title":"Linear Algebra Appl."},{"issue":"5","key":"10.1016\/j.ins.2023.120024_br0150","doi-asserted-by":"crossref","first-page":"2295","DOI":"10.1137\/090752286","article-title":"Tensor-train decomposition","volume":"33","author":"Oseledets","year":"2011","journal-title":"SIAM J. Sci. Comput."},{"author":"Zhao","key":"10.1016\/j.ins.2023.120024_br0160"},{"key":"10.1016\/j.ins.2023.120024_br0170","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"5697","article-title":"Efficient low rank tensor ring completion","author":"Wang","year":"2017"},{"key":"10.1016\/j.ins.2023.120024_br0180","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"9151","article-title":"Tensor ring decomposition with rank minimization on latent space: an efficient approach for tensor completion","volume":"vol. 33","author":"Yuan","year":"2019"},{"key":"10.1016\/j.ins.2023.120024_br0190","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"5249","article-title":"Tensor robust principal component analysis: exact recovery of corrupted low-rank tensors via convex optimization","author":"Lu","year":"2016"},{"issue":"11","key":"10.1016\/j.ins.2023.120024_br0200","doi-asserted-by":"crossref","first-page":"4567","DOI":"10.1109\/TNNLS.2019.2956153","article-title":"Enhanced sparsity prior model for low-rank tensor completion","volume":"31","author":"Xue","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ins.2023.120024_br0210","series-title":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","first-page":"324","article-title":"Costco: a neural tensor completion model for sparse tensors","author":"Liu","year":"2019"},{"key":"10.1016\/j.ins.2023.120024_br0220","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"4420","article-title":"Nonlinear system identification via tensor completion","volume":"vol. 34","author":"Kargas","year":"2020"},{"author":"Xu","key":"10.1016\/j.ins.2023.120024_br0230"},{"key":"10.1016\/j.ins.2023.120024_br0240","article-title":"Distributed flexible nonlinear tensor factorization","volume":"29","author":"Zhe","year":"2016","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"11","key":"10.1016\/j.ins.2023.120024_br0250","doi-asserted-by":"crossref","first-page":"8998","DOI":"10.1109\/TGRS.2019.2924017","article-title":"Remote sensing image reconstruction using tensor ring completion and total variation","volume":"57","author":"He","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.ins.2023.120024_br0260","first-page":"1","article-title":"Total variation regularized weighted tensor ring decomposition for missing data recovery in high-dimensional optical remote sensing images","volume":"19","author":"Wang","year":"2021","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"3","key":"10.1016\/j.ins.2023.120024_br0270","article-title":"Matrix and tensor completion using tensor ring decomposition with sparse representation","volume":"2","author":"Asante-Mensah","year":"2021","journal-title":"Mach. Learn.: Sci. Technol."},{"key":"10.1016\/j.ins.2023.120024_br0280","series-title":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","first-page":"1071","article-title":"Higher-dimension tensor completion via low-rank tensor ring decomposition","author":"Yuan","year":"2018"},{"issue":"3","key":"10.1016\/j.ins.2023.120024_br0290","doi-asserted-by":"crossref","first-page":"454","DOI":"10.1109\/JSTSP.2021.3051503","article-title":"Adaptive rank selection for tensor ring decomposition","volume":"15","author":"Sedighin","year":"2021","journal-title":"IEEE J. Sel. Top. Signal Process."},{"key":"10.1016\/j.ins.2023.120024_br0300","series-title":"International Conference on Machine Learning, PMLR","first-page":"5947","article-title":"Evolutionary topology search for tensor network decomposition","author":"Li","year":"2020"},{"author":"Hashemizadeh","key":"10.1016\/j.ins.2023.120024_br0310"},{"author":"Nie","key":"10.1016\/j.ins.2023.120024_br0320"},{"key":"10.1016\/j.ins.2023.120024_br0330","doi-asserted-by":"crossref","first-page":"3568","DOI":"10.1109\/TIP.2021.3062195","article-title":"Bayesian low rank tensor ring for image recovery","volume":"30","author":"Long","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2023.120024_br0340","series-title":"ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"3142","article-title":"Tensor-ring nuclear norm minimization and application for visual: data completion","author":"Yu","year":"2019"},{"key":"10.1016\/j.ins.2023.120024_br0350","doi-asserted-by":"crossref","first-page":"3685","DOI":"10.1109\/TSP.2021.3085116","article-title":"Robust low-rank tensor completion based on tensor ring rank via \u2113p,\u03f5-norm","volume":"69","author":"Li","year":"2021","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.ins.2023.120024_br0360","doi-asserted-by":"crossref","first-page":"1117","DOI":"10.1109\/TCI.2020.3006718","article-title":"Robust low-rank tensor ring completion","volume":"6","author":"Huang","year":"2020","journal-title":"IEEE Trans. Comput. Imaging"},{"key":"10.1016\/j.ins.2023.120024_br0370","article-title":"Robust to rank selection: low-rank sparse tensor-ring completion","author":"Yu","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"author":"Wu","key":"10.1016\/j.ins.2023.120024_br0380"},{"key":"10.1016\/j.ins.2023.120024_br0390","series-title":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","first-page":"537","article-title":"Neural tensor factorization for temporal interaction learning","author":"Wu","year":"2019"},{"key":"10.1016\/j.ins.2023.120024_br0400","series-title":"IJCAI","first-page":"2449","article-title":"Neural tensor model for learning multi-aspect factors in recommender systems","author":"Chen","year":"2020"},{"author":"Wu","key":"10.1016\/j.ins.2023.120024_br0410"},{"key":"10.1016\/j.ins.2023.120024_br0420","series-title":"International Conference on Machine Learning, PMLR","first-page":"448","article-title":"Batch normalization: accelerating deep network training by reducing internal covariate shift","author":"Ioffe","year":"2015"},{"issue":"1","key":"10.1016\/j.ins.2023.120024_br0430","first-page":"1929","article-title":"Dropout: a simple way to prevent neural networks from overfitting","volume":"15","author":"Srivastava","year":"2014","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.ins.2023.120024_br0440","doi-asserted-by":"crossref","DOI":"10.1016\/j.trc.2020.102673","article-title":"A nonconvex low-rank tensor completion model for spatiotemporal traffic data imputation","volume":"117","author":"Chen","year":"2020","journal-title":"Transp. Res., Part C, Emerg. Technol."},{"issue":"4","key":"10.1016\/j.ins.2023.120024_br0450","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TIP.2003.819861","article-title":"Image quality assessment: from error visibility to structural similarity","volume":"13","author":"Wang","year":"2004","journal-title":"IEEE Trans. Image Process."},{"author":"Kingma","key":"10.1016\/j.ins.2023.120024_br0460"},{"key":"10.1016\/j.ins.2023.120024_br0470","series-title":"Proceedings of the 22nd ACM International Conference on Multimedia","first-page":"675","article-title":"Caffe: convolutional architecture for fast feature embedding","author":"Jia","year":"2014"},{"key":"10.1016\/j.ins.2023.120024_br0480","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"922","article-title":"Attention based spatial-temporal graph convolutional networks for traffic flow forecasting","volume":"vol. 33","author":"Guo","year":"2019"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025523016092?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025523016092?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,13]],"date-time":"2024-01-13T16:18:27Z","timestamp":1705162707000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025523016092"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,2]]},"references-count":48,"alternative-id":["S0020025523016092"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2023.120024","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2024,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A neural tensor decomposition model for high-order sparse data recovery","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2023.120024","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"120024"}}