{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,8]],"date-time":"2025-04-08T19:07:22Z","timestamp":1744139242345},"reference-count":23,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1016\/j.ins.2023.119817","type":"journal-article","created":{"date-parts":[[2023,10,28]],"date-time":"2023-10-28T02:29:18Z","timestamp":1698460158000},"page":"119817","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Gas system scheduling strategy for steel metallurgical process based on multi-objective differential evolution"],"prefix":"10.1016","volume":"654","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6080-4671","authenticated-orcid":false,"given":"Lili","family":"Feng","sequence":"first","affiliation":[]},{"given":"Jun","family":"Peng","sequence":"additional","affiliation":[]},{"given":"Zhaojun","family":"Huang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2023.119817_br0010","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.ins.2015.10.020","article-title":"Granular-computing based hybrid collaborative fuzzy clustering for long-term prediction of multiple gas holders levels","volume":"330","author":"Han","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2023.119817_br0020","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.conengprac.2018.06.012","article-title":"Construction of prediction intervals for gas flow systems in steel industry based on granular computing","volume":"78","author":"Han","year":"2018","journal-title":"Control Eng. Pract."},{"key":"10.1016\/j.ins.2023.119817_br0030","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.ins.2020.07.029","article-title":"Ship-unloading scheduling optimization for a steel plant","volume":"544","author":"Gao","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2023.119817_br0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.energy.2022.125874","article-title":"Multi-objective optimization and analysis of material and energy flows in a typical steel plant","volume":"263","author":"Yuan","year":"2023","journal-title":"Energy"},{"issue":"3","key":"10.1016\/j.ins.2023.119817_br0050","doi-asserted-by":"crossref","first-page":"439","DOI":"10.1109\/TNNLS.2011.2179309","article-title":"Hybrid neural prediction and optimized adjustment for coke oven gas system in steel industry","volume":"23","author":"Zhao","year":"2012","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ins.2023.119817_br0060","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.conengprac.2015.10.003","article-title":"Use of a quantile regression based echo state network ensemble for construction of prediction intervals of gas flow in a blast furnace","volume":"46","author":"Lv","year":"2016","journal-title":"Control Eng. Pract."},{"issue":"4","key":"10.1016\/j.ins.2023.119817_br0070","doi-asserted-by":"crossref","first-page":"1761","DOI":"10.1109\/TASE.2016.2629505","article-title":"Data-based predictive optimization for byproduct gas system in steel industry","volume":"14","author":"Zhao","year":"2016","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"issue":"4","key":"10.1016\/j.ins.2023.119817_br0080","doi-asserted-by":"crossref","first-page":"1149","DOI":"10.1109\/TASE.2013.2277661","article-title":"A Bayesian networks structure learning and reasoning-based byproduct gas scheduling in steel industry","volume":"11","author":"Zhao","year":"2014","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"key":"10.1016\/j.ins.2023.119817_br0090","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.compchemeng.2015.02.004","article-title":"Optimization of steel production scheduling with complex time-sensitive electricity cost","volume":"76","author":"Hadera","year":"2015","journal-title":"Comput. Chem. Eng."},{"key":"10.1016\/j.ins.2023.119817_br0100","doi-asserted-by":"crossref","first-page":"432","DOI":"10.1016\/j.ijepes.2014.10.042","article-title":"Hybrid: particle swarm optimization-genetic algorithm and particle swarm optimization-shuffled frog leaping algorithm for long-term generator maintenance scheduling","volume":"65","author":"Samuel","year":"2015","journal-title":"Int. J. Electr. Power Energy Syst."},{"key":"10.1016\/j.ins.2023.119817_br0110","doi-asserted-by":"crossref","first-page":"1210","DOI":"10.1016\/j.energy.2019.07.066","article-title":"Study on guaranteed output constraints in the long term joint optimal scheduling for the hydropower station group","volume":"185","author":"He","year":"2019","journal-title":"Energy"},{"key":"10.1016\/j.ins.2023.119817_br0120","series-title":"Proceeding of the IEEE International Conference on Power and Renewable Energy","first-page":"373","article-title":"Long-term scheduling with the consideration of interruptible load","author":"Ge","year":"2017"},{"key":"10.1016\/j.ins.2023.119817_br0130","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2021.117069","article-title":"Artificial intelligent based energy scheduling of steel mill gas utilization system towards carbon neutrality","volume":"295","author":"Xi","year":"2021","journal-title":"Appl. Energy"},{"key":"10.1016\/j.ins.2023.119817_br0140","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1016\/j.ins.2023.02.084","article-title":"Safe reinforcement learning method integrating process knowledge for real-time scheduling of gas supply network","volume":"633","author":"Zhou","year":"2023","journal-title":"Inf. Sci."},{"issue":"2","key":"10.1016\/j.ins.2023.119817_br0150","doi-asserted-by":"crossref","first-page":"11938","DOI":"10.1016\/j.ifacol.2020.12.717","article-title":"Scheduling knowledge retrieval based on heterogeneous feature learning for byproduct gas system in steel industry","volume":"53","author":"Liu","year":"2020","journal-title":"IFAC-PapersOnLine"},{"key":"10.1016\/j.ins.2023.119817_br0160","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.conengprac.2018.08.015","article-title":"A joint scheduling method for multiple byproduct gases in steel industry","volume":"80","author":"Jin","year":"2018","journal-title":"Control Eng. Pract."},{"key":"10.1016\/j.ins.2023.119817_br0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.jclepro.2020.124529","article-title":"Reducing the fluctuation of oxygen demand in a steel plant through optimal production scheduling","volume":"282","author":"Xu","year":"2021","journal-title":"J. Clean. Prod."},{"key":"10.1016\/j.ins.2023.119817_br0180","article-title":"Operation scheduling optimization of gas-steam-power conversion systems in iron and steel enterprises","volume":"2016","author":"Hu","year":"2022","journal-title":"Appl. Therm. Eng."},{"issue":"21","key":"10.1016\/j.ins.2023.119817_br0190","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.ifacol.2018.09.384","article-title":"A causal model-based scheduling approach for coke oven gas system in steel industry","volume":"51","author":"Jin","year":"2018","journal-title":"IFAC-PapersOnLine"},{"key":"10.1016\/j.ins.2023.119817_br0200","doi-asserted-by":"crossref","first-page":"312","DOI":"10.1016\/j.ins.2020.06.063","article-title":"A scheduling approach with uncertainties in generation and consumption for converter gas system in steel industry","volume":"546","author":"Jin","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2023.119817_br0210","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.conengprac.2018.08.015","article-title":"A joint scheduling method for multiple byproduct gases in steel industry","volume":"80","author":"Jin","year":"2018","journal-title":"Control Eng. Pract."},{"issue":"2","key":"10.1016\/j.ins.2023.119817_br0220","doi-asserted-by":"crossref","first-page":"304","DOI":"10.20965\/jaciii.2023.p0304","article-title":"A data-driven prediction model of blast furnace gas generation based on spectrum decomposition","volume":"27","author":"Feng","year":"2023","journal-title":"J. Adv. Comput. Intell. Intell. Inform."},{"issue":"4","key":"10.1016\/j.ins.2023.119817_br0230","article-title":"Prediction model for total amount of coke oven gas generation based on FCM-RBF","volume":"70","author":"Feng","year":"2023","journal-title":"Int. J. Comput. Appl. Technol."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025523014020?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025523014020?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,11,24]],"date-time":"2023-11-24T19:15:43Z","timestamp":1700853343000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025523014020"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":23,"alternative-id":["S0020025523014020"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2023.119817","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2024,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Gas system scheduling strategy for steel metallurgical process based on multi-objective differential evolution","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2023.119817","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"119817"}}