{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,4]],"date-time":"2024-07-04T17:49:44Z","timestamp":1720115384606},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1016\/j.ins.2023.118989","type":"journal-article","created":{"date-parts":[[2023,4,23]],"date-time":"2023-04-23T19:07:47Z","timestamp":1682276867000},"page":"118989","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["Anomaly detection for streaming data based on grid-clustering and Gaussian distribution"],"prefix":"10.1016","volume":"638","author":[{"given":"Beiji","family":"Zou","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6584-8641","authenticated-orcid":false,"given":"Kangkang","family":"Yang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9957-7867","authenticated-orcid":false,"given":"Xiaoyan","family":"Kui","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8872-2117","authenticated-orcid":false,"given":"Shenghui","family":"Liao","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2023.118989_br0010","doi-asserted-by":"crossref","first-page":"2923","DOI":"10.1109\/COMST.2018.2844341","article-title":"Deep learning for IoT big data and streaming analytics: a survey","volume":"20","author":"Mohammadi","year":"2018","journal-title":"IEEE Commun. Surv. Tutor."},{"key":"10.1016\/j.ins.2023.118989_br0020","series-title":"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)","first-page":"994","article-title":"IoT healthcare analytics: the importance of anomaly detection","author":"Ukil","year":"2016"},{"key":"10.1016\/j.ins.2023.118989_br0030","doi-asserted-by":"crossref","first-page":"6481","DOI":"10.1109\/JIOT.2019.2958185","article-title":"Anomaly detection for IoT time-series data: a survey","volume":"7","author":"Cook","year":"2020","journal-title":"IEEE Int. Things J."},{"key":"10.1016\/j.ins.2023.118989_br0040","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/j.ijinfomgt.2018.08.006","article-title":"Real-time big data processing for anomaly detection: a survey","volume":"45","author":"Ariyaluran Habeeb","year":"2019","journal-title":"Int. J. Inf. Manag."},{"key":"10.1016\/j.ins.2023.118989_br0050","doi-asserted-by":"crossref","first-page":"1475","DOI":"10.1109\/TCYB.2018.2804940","article-title":"Distributed online one-class support vector machine for anomaly detection over networks","volume":"49","author":"Miao","year":"2019","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2023.118989_br0060","series-title":"2019 International Conference on Computational Intelligence and Knowledge, Economy (ICCIKE)","first-page":"146","article-title":"Anomaly detection techniques using deep learning in IoT: a survey","author":"Sharma","year":"2019"},{"key":"10.1016\/j.ins.2023.118989_br0070","series-title":"Identification of Outliers","volume":"vol. 11","author":"Hawkins","year":"1980"},{"key":"10.1016\/j.ins.2023.118989_br0080","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.neunet.2021.02.017","article-title":"Unsupervised anomaly detection in stream data with online evolving spiking neural networks","volume":"139","author":"Maciag","year":"2021","journal-title":"Neural Netw."},{"key":"10.1016\/j.ins.2023.118989_br0090","series-title":"2014 IEEE International Conference on Data Mining","first-page":"600","article-title":"Rs-forest: a rapid density estimator for streaming anomaly detection","author":"Wu","year":"2014"},{"key":"10.1016\/j.ins.2023.118989_br0100","article-title":"A review on outlier\/anomaly detection in time series data","volume":"54","author":"Bl\u00e1zquez-Garc\u00eda","year":"2021","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.ins.2023.118989_br0110","doi-asserted-by":"crossref","DOI":"10.3390\/s19112451","article-title":"FuseAD: unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning models","volume":"19","author":"Munir","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.ins.2023.118989_br0120","article-title":"Data-driven anomaly detection approach for time-series streaming data","volume":"20","author":"Zhang","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.ins.2023.118989_br0130","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1016\/j.neucom.2017.04.070","article-title":"Unsupervised real-time anomaly detection for streaming data","volume":"262","author":"Ahmad","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2023.118989_br0140","series-title":"2015 International Joint Conference on Neural Networks (IJCNN)","first-page":"1","article-title":"Online fault detection based on typicality and eccentricity data analytics","author":"Costa","year":"2015"},{"key":"10.1016\/j.ins.2023.118989_br0150","doi-asserted-by":"crossref","first-page":"4283","DOI":"10.1007\/s00500-020-05442-1","article-title":"ELOF: fast and memory-efficient anomaly detection algorithm in data streams","volume":"25","author":"Yang","year":"2021","journal-title":"Soft Comput."},{"key":"10.1016\/j.ins.2023.118989_br0160","doi-asserted-by":"crossref","first-page":"3246","DOI":"10.1109\/TKDE.2016.2597833","article-title":"Fast memory efficient local outlier detection in data streams","volume":"28","author":"Salehi","year":"2016","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2023.118989_br0170","doi-asserted-by":"crossref","first-page":"901","DOI":"10.1016\/j.ins.2022.06.013","article-title":"Efficient density and cluster based incremental outlier detection in data streams","volume":"607","author":"Degirmenci","year":"2022","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2023.118989_br0180","doi-asserted-by":"crossref","first-page":"2284","DOI":"10.1109\/TCYB.2019.2935066","article-title":"Online and unsupervised anomaly detection for streaming data using an array of sliding windows and PDDs","volume":"51","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2023.118989_br0190","doi-asserted-by":"crossref","first-page":"757","DOI":"10.1016\/j.ins.2022.06.064","article-title":"Evolving anomaly detection for network streaming data","volume":"608","author":"Xiaolan","year":"2022","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2023.118989_br0200","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1007\/s10994-020-05905-4","article-title":"Statistical hierarchical clustering algorithm for outlier detection in evolving data streams","volume":"110","author":"Krle\u017ea","year":"2021","journal-title":"Mach. Learn."},{"key":"10.1016\/j.ins.2023.118989_br0210","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.116510","article-title":"A k-means clustering and SVM based hybrid concept drift detection technique for network anomaly detection","volume":"193","author":"Jain","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2023.118989_br0220","doi-asserted-by":"crossref","first-page":"649","DOI":"10.1016\/j.ins.2021.10.049","article-title":"A fault-tolerant clustering algorithm for processing data from multiple streams","volume":"584","author":"Otero","year":"2022","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2023.118989_br0230","doi-asserted-by":"crossref","DOI":"10.1145\/1552303.1552305","article-title":"Stream data clustering based on grid density and attraction","volume":"3","author":"Tu","year":"2009","journal-title":"ACM Trans. Knowl. Discov. Data"},{"key":"10.1016\/j.ins.2023.118989_br0240","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.ins.2016.12.004","article-title":"Fully online clustering of evolving data streams into arbitrarily shaped clusters","volume":"382\u2013383","author":"Hyde","year":"2017","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2023.118989_br0250","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/j.ins.2019.03.022","article-title":"A buffer-based online clustering for evolving data stream","volume":"489","author":"Islam","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2023.118989_br0260","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/j.ins.2019.12.022","article-title":"An evolving approach to data streams clustering based on typicality and eccentricity data analytics","volume":"518","author":"Bezerra","year":"2020","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2023.118989_br0270","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2022.09.054","article-title":"Evolving data stream clustering based on constant false clustering probability","volume":"614","author":"Kashani","year":"2022","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2023.118989_br0280","doi-asserted-by":"crossref","first-page":"543","DOI":"10.1016\/j.ins.2021.05.033","article-title":"An efficient transmission algorithm for power grid data suitable for autonomous multi-robot systems","volume":"572","author":"Chen","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2023.118989_br0290","doi-asserted-by":"crossref","first-page":"617","DOI":"10.1109\/TKDE.2020.2990196","article-title":"ESA-stream: efficient self-adaptive online data stream clustering","volume":"34","author":"Li","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2023.118989_br0300","doi-asserted-by":"crossref","DOI":"10.3390\/app11125320","article-title":"A review of machine learning and deep learning techniques for anomaly detection in IoT data","volume":"11","author":"Al-amri","year":"2021","journal-title":"Appl. Sci."},{"key":"10.1016\/j.ins.2023.118989_br0310","series-title":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","first-page":"38","article-title":"Evaluating real-time anomaly detection algorithms \u2013 the numenta anomaly benchmark","author":"Lavin","year":"2015"},{"key":"10.1016\/j.ins.2023.118989_br0320","author":"smirmik, Mikhail"},{"key":"10.1016\/j.ins.2023.118989_br0330","author":"Burnaev"},{"key":"10.1016\/j.ins.2023.118989_br0340","series-title":"12th IFIP\/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops","first-page":"385","article-title":"Statistical techniques for online anomaly detection in data centers","author":"Wang","year":"2011"},{"key":"10.1016\/j.ins.2023.118989_br0350","author":"Stanway"},{"key":"10.1016\/j.ins.2023.118989_br0360","author":"Adams"},{"key":"10.1016\/j.ins.2023.118989_br0370","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1007\/s10994-016-5567-7","article-title":"Expected similarity estimation for large-scale batch and streaming anomaly detection","volume":"105","author":"Schneider","year":"2016","journal-title":"Mach. Learn."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025523005704?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025523005704?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,18]],"date-time":"2024-01-18T03:39:00Z","timestamp":1705549140000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025523005704"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8]]},"references-count":37,"alternative-id":["S0020025523005704"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2023.118989","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2023,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Anomaly detection for streaming data based on grid-clustering and Gaussian distribution","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2023.118989","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"118989"}}