{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,18]],"date-time":"2024-10-18T23:10:14Z","timestamp":1729293014871,"version":"3.27.0"},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61906077","62102168","62172193","62176106","U1836220"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2020M671376","2020T130257"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004608","name":"Natural Science Foundation of Jiangsu Province","doi-asserted-by":"publisher","award":["BK20190838","BK20200888"],"id":[{"id":"10.13039\/501100004608","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010246","name":"Postdoctoral Science Foundation of Jiangsu Province","doi-asserted-by":"publisher","award":["2021K596C"],"id":[{"id":"10.13039\/501100010246","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100012493","name":"Jiangsu Province Postdoctoral Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100012493","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1016\/j.ins.2023.118981","type":"journal-article","created":{"date-parts":[[2023,4,20]],"date-time":"2023-04-20T20:40:03Z","timestamp":1682023203000},"page":"118981","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Large-scale non-negative subspace clustering based on Nystr\u00f6m approximation"],"prefix":"10.1016","volume":"638","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3354-5184","authenticated-orcid":false,"given":"Hongjie","family":"Jia","sequence":"first","affiliation":[]},{"given":"Qize","family":"Ren","sequence":"additional","affiliation":[]},{"given":"Longxia","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Qirong","family":"Mao","sequence":"additional","affiliation":[]},{"given":"Liangjun","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Heping","family":"Song","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2023.118981_br0010","series-title":"Twenty-Fourth International Joint Conference on Artificial Intelligence","article-title":"Semantic single video segmentation with robust graph representation","author":"Zhao","year":"2015"},{"key":"10.1016\/j.ins.2023.118981_br0020","article-title":"Sparse subspace clustering by learning approximation l0 codes","volume":"31","author":"Li","year":"2017","journal-title":"Proc. AAAI Conf. Artif. Intell."},{"issue":"1","key":"10.1016\/j.ins.2023.118981_br0030","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1093\/imaiai\/iaaa031","article-title":"Subspace clustering using ensembles of k-subspaces","volume":"10","author":"Lipor","year":"2021","journal-title":"Inf. Inference"},{"issue":"3","key":"10.1016\/j.ins.2023.118981_br0040","doi-asserted-by":"crossref","first-page":"1058","DOI":"10.1109\/TCYB.2018.2794998","article-title":"Fast large-scale spectral clustering via explicit feature mapping","volume":"49","author":"He","year":"2018","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2023.118981_br0050","first-page":"4412","article-title":"Large-scale multi-view subspace clustering in linear time","volume":"34","author":"Kang","year":"2020","journal-title":"Proc. AAAI Conf. Artif. Intell."},{"issue":"6","key":"10.1016\/j.ins.2023.118981_br0060","doi-asserted-by":"crossref","first-page":"1083","DOI":"10.1109\/TNNLS.2013.2287275","article-title":"Global and local structure preservation for feature selection","volume":"25","author":"Liu","year":"2013","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ins.2023.118981_br0070","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1016\/j.ins.2021.01.087","article-title":"Nonnegative matrix factorization with local similarity learning","volume":"562","author":"Peng","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2023.118981_br0080","series-title":"European Conference on Machine Learning","first-page":"530","article-title":"Nonnegative lagrangian relaxation of k-means and spectral clustering","author":"Ding","year":"2005"},{"issue":"2","key":"10.1016\/j.ins.2023.118981_br0090","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1109\/TPAMI.2004.1262185","article-title":"Spectral grouping using the nystrom method","volume":"26","author":"Fowlkes","year":"2004","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2023.118981_br0100","first-page":"4953","article-title":"Improved guarantees and a multiple-descent curve for column subset selection and the nystrom method","volume":"33","author":"Derezinski","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.ins.2023.118981_br0110","series-title":"2020 IEEE International Conference on Image Processing (ICIP)","first-page":"1766","article-title":"Sketched sparse subspace clustering for large-scale hyperspectral images","author":"Huang","year":"2020"},{"key":"10.1016\/j.ins.2023.118981_br0120","series-title":"2020 25th International Conference on Pattern Recognition (ICPR)","first-page":"1558","article-title":"Fast subspace clustering based on the kronecker product","author":"Zhou","year":"2021"},{"issue":"5","key":"10.1016\/j.ins.2023.118981_br0130","first-page":"2438","article-title":"Enhanced group sparse regularized nonconvex regression for face recognition","volume":"44","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2023.118981_br0140","series-title":"Thirteenth International Conference on Graphics and Image Processing (ICGIP 2021), vol. 12083","first-page":"379","article-title":"Subspace representation based on pairwise linear regression for large scale image set classification","author":"Feng","year":"2022"},{"key":"10.1016\/j.ins.2023.118981_br0150","first-page":"7576","article-title":"Efficient one-pass multi-view subspace clustering with consensus anchors","volume":"36","author":"Liu","year":"2022","journal-title":"Proc. AAAI Conf. Artif. Intell."},{"key":"10.1016\/j.ins.2023.118981_br0160","article-title":"Learnable subspace clustering","author":"Li","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ins.2023.118981_br0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2022.05.091","article-title":"Low-rank tensor approximation with local structure for multi-view intrinsic subspace clustering","author":"Fu","year":"2022","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2023.118981_br0180","article-title":"Low-rank tensor regularized views recovery for incomplete multiview clustering","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ins.2023.118981_br0190","series-title":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","first-page":"342","article-title":"Large-scale subspace clustering via k-factorization","author":"Fan","year":"2021"},{"key":"10.1016\/j.ins.2023.118981_br0200","article-title":"Large-scale subspace clustering by independent distributed and parallel coding","author":"Li","year":"2021","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2023.118981_br0210","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"9776","article-title":"Highly-efficient incomplete large-scale multi-view clustering with consensus bipartite graph","author":"Wang","year":"2022"},{"key":"10.1016\/j.ins.2023.118981_br0220","series-title":"ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"3902","article-title":"Revisiting fast spectral clustering with anchor graph","author":"Wang","year":"2020"},{"key":"10.1016\/j.ins.2023.118981_br0230","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.ins.2020.07.018","article-title":"Graphlshc: towards large scale spectral hypergraph clustering","volume":"544","author":"Yang","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2023.118981_br0240","series-title":"Proceedings of the 14th ACM International Conference on Web Search and Data Mining","first-page":"869","article-title":"Towards scalable spectral embedding and data visualization via spectral coarsening","author":"Zhao","year":"2021"},{"key":"10.1016\/j.ins.2023.118981_br0250","first-page":"1","article-title":"Randomized spectral clustering in large-scale stochastic block models","author":"Zhang","year":"2022","journal-title":"J. Comput. Graph. Stat."},{"key":"10.1016\/j.ins.2023.118981_br0260","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.ins.2022.01.017","article-title":"One-step multi-view spectral clustering with cluster label correlation graph","volume":"592","author":"El Hajjar","year":"2022","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2023.118981_br0270","article-title":"Unified one-step multi-view spectral clustering","author":"Tang","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2023.118981_br0280","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.engappai.2017.11.008","article-title":"Dual-graph regularized non-negative matrix factorization with sparse and orthogonal constraints","volume":"69","author":"Meng","year":"2018","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.ins.2023.118981_br0290","doi-asserted-by":"crossref","DOI":"10.1109\/LSP.2022.3179168","article-title":"Nonlinear orthogonal nmf on the stiefel manifold with graph-based total variation regularization","author":"Rahiche","year":"2022","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.ins.2023.118981_br0300","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2019.103354","article-title":"Robust nonnegative matrix factorization with local coordinate constraint for image clustering","volume":"88","author":"Peng","year":"2020","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.ins.2023.118981_br0310","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2021.104499","article-title":"Multiple graph regularized semi-supervised nonnegative matrix factorization with adaptive weights for clustering","volume":"106","author":"Zhang","year":"2021","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.ins.2023.118981_br0320","doi-asserted-by":"crossref","DOI":"10.1016\/j.sigpro.2021.108428","article-title":"Multi-resolution beta-divergence nmf for blind spectral unmixing","volume":"193","author":"Leplat","year":"2022","journal-title":"Signal Process."},{"key":"10.1016\/j.ins.2023.118981_br0330","doi-asserted-by":"crossref","DOI":"10.1016\/j.dsp.2022.103447","article-title":"Robust multi-view non-negative matrix factorization for clustering","volume":"123","author":"Liu","year":"2022","journal-title":"Digit. Signal Process."},{"issue":"11","key":"10.1016\/j.ins.2023.118981_br0340","doi-asserted-by":"crossref","first-page":"1628","DOI":"10.1109\/LSP.2019.2941368","article-title":"Deep clustering via weighted k-subspace network","volume":"26","author":"Huang","year":"2019","journal-title":"IEEE Signal Process. Lett."},{"issue":"2","key":"10.1016\/j.ins.2023.118981_br0350","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1002\/env.3170050203","article-title":"Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values","volume":"5","author":"Paatero","year":"1994","journal-title":"Environmetrics"},{"issue":"6755","key":"10.1016\/j.ins.2023.118981_br0360","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1038\/44565","article-title":"Learning the parts of objects by non-negative matrix factorization","volume":"401","author":"Lee","year":"1999","journal-title":"Nature"},{"key":"10.1016\/j.ins.2023.118981_br0370","article-title":"Twin learning for similarity and clustering: a unified kernel approach","volume":"31","author":"Kang","year":"2017","journal-title":"Proc. AAAI Conf. Artif. Intell."},{"issue":"725\/36","key":"10.1016\/j.ins.2023.118981_br0380","first-page":"725","article-title":"Karush-kuhn-tucker conditions","volume":"10","author":"Gordon","year":"2012","journal-title":"Optimization"},{"key":"10.1016\/j.ins.2023.118981_br0390","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.neucom.2019.06.070","article-title":"Improved fixed-rank nystr\u00f6m approximation via qr decomposition: practical and theoretical aspects","volume":"363","author":"Pourkamali-Anaraki","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2023.118981_br0400","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.115813","article-title":"An efficient nystr\u00f6m spectral clustering algorithm using incomplete cholesky decomposition","volume":"186","author":"Jia","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2023.118981_br0410","article-title":"Structured graph learning for scalable subspace clustering: from single view to multiview","author":"Kang","year":"2021","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2023.118981_br0420","series-title":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","first-page":"959","article-title":"K-multiple-means: a multiple-means clustering method with specified k clusters","author":"Nie","year":"2019"},{"key":"10.1016\/j.ins.2023.118981_br0430","series-title":"Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","first-page":"1206","article-title":"Spectral clustering of large-scale data by directly solving normalized cut","author":"Chen","year":"2018"},{"issue":"12","key":"10.1016\/j.ins.2023.118981_br0440","doi-asserted-by":"crossref","first-page":"2499","DOI":"10.1109\/TNNLS.2015.2490080","article-title":"A unified framework for representation-based subspace clustering of out-of-sample and large-scale data","volume":"27","author":"Peng","year":"2015","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"8","key":"10.1016\/j.ins.2023.118981_br0450","first-page":"1669","article-title":"Large scale spectral clustering via landmark-based sparse representation","volume":"45","author":"Cai","year":"2014","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2023.118981_br0460","series-title":"Twenty-Fifth AAAI Conference on Artificial Intelligence","article-title":"Large scale spectral clustering with landmark-based representation","author":"Chen","year":"2011"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025523005625?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025523005625?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,18]],"date-time":"2024-10-18T22:45:03Z","timestamp":1729291503000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025523005625"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8]]},"references-count":46,"alternative-id":["S0020025523005625"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2023.118981","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2023,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Large-scale non-negative subspace clustering based on Nystr\u00f6m approximation","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2023.118981","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"118981"}}