{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,3]],"date-time":"2024-09-03T01:34:03Z","timestamp":1725327243167},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.ins.2022.12.071","type":"journal-article","created":{"date-parts":[[2022,12,30]],"date-time":"2022-12-30T16:33:25Z","timestamp":1672418005000},"page":"128-146","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Identifying influential users in unknown social networks for adaptive incentive allocation under budget restriction"],"prefix":"10.1016","volume":"624","author":[{"given":"Shiqing","family":"Wu","sequence":"first","affiliation":[]},{"given":"Weihua","family":"Li","sequence":"additional","affiliation":[]},{"given":"Hao","family":"Shen","sequence":"additional","affiliation":[]},{"given":"Quan","family":"Bai","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2022.12.071_b0005","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.knosys.2013.03.012","article-title":"Recommender systems survey","volume":"46","author":"Bobadilla","year":"2013","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2022.12.071_b0010","series-title":"Social behavior: Its elementary forms","author":"Homans","year":"1974"},{"key":"10.1016\/j.ins.2022.12.071_b0015","doi-asserted-by":"crossref","unstructured":"A. Singla, M. Santoni, G. Bart\u00f3k, P. Mukerji, M. Meenen, A. Krause, Incentivizing Users for Balancing Bike Sharing Systems, in: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp. 723\u2013729.","DOI":"10.1609\/aaai.v29i1.9251"},{"key":"10.1016\/j.ins.2022.12.071_b0020","doi-asserted-by":"crossref","first-page":"893","DOI":"10.1109\/JSAC.2017.2680838","article-title":"Incentivize Multi-Class Crowd Labeling Under Budget Constraint","volume":"35","author":"Gan","year":"2017","journal-title":"IEEE J. Sel. Areas Commun."},{"key":"10.1016\/j.ins.2022.12.071_b0025","unstructured":"C. Qiu, A. Squicciarini, B. Hanrahan, Incentivizing Distributive Fairness for Crowdsourcing Workers, in: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, volume 9, 2019, pp. 404\u2013412."},{"key":"10.1016\/j.ins.2022.12.071_b0030","unstructured":"S. Wu, Q. Bai, W. Li, Learning Policies for Effective Incentive Allocation in Unknown Social Networks, in: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, 2021, pp. 1701\u20131703."},{"key":"10.1016\/j.ins.2022.12.071_b0035","doi-asserted-by":"crossref","unstructured":"A. Singla, A. Krause, Truthful Incentives in Crowdsourcing Tasks Using Regret Minimization Mechanisms, in: Proceedings of the 22nd International Conference on World Wide Web, 2013, pp. 1167\u20131178.","DOI":"10.1145\/2488388.2488490"},{"key":"10.1016\/j.ins.2022.12.071_b0040","doi-asserted-by":"crossref","unstructured":"B. Li, D. Hao, D. Zhao, Incentive-Compatible Diffusion Auctions, in: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, 2020, pp. 231\u2013237.","DOI":"10.24963\/ijcai.2020\/33"},{"key":"10.1016\/j.ins.2022.12.071_b0045","unstructured":"W. Zhang, D. Zhao, Y. Zhang, Incentivize Diffusion with Fair Rewards, in: Proceedings of the 24th European Conference on Artificial Intelligence, 2020, pp. 251\u2013258."},{"key":"10.1016\/j.ins.2022.12.071_b0050","doi-asserted-by":"crossref","first-page":"1852","DOI":"10.1109\/TKDE.2018.2807843","article-title":"Influence Maximization on Social Graphs: A Survey","volume":"30","author":"Li","year":"2018","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2022.12.071_b0055","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.109654","article-title":"Online influence maximization in the absence of network structure","volume":"254","author":"He","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2022.12.071_b0060","unstructured":"D. Li, M. Lowalekar, P. Varakantham, Claim: curriculum learning policy for influence maximization in unknown social networks, in: Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, 2021, pp. 1455\u20131465."},{"key":"10.1016\/j.ins.2022.12.071_b0065","doi-asserted-by":"crossref","unstructured":"B. Wilder, N. Immorlica, E. Rice, M. Tambe, Maximizing Influence in an Unknown Social Network, in: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, 2018, pp. 4743\u20134750.","DOI":"10.1609\/aaai.v32i1.11585"},{"key":"10.1016\/j.ins.2022.12.071_b0070","doi-asserted-by":"crossref","unstructured":"J. Tang, J. Sun, C. Wang, Z. Yang, Social influence analysis in large-scale networks, in: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009, pp. 807\u2013816.","DOI":"10.1145\/1557019.1557108"},{"key":"10.1016\/j.ins.2022.12.071_b0075","doi-asserted-by":"crossref","first-page":"881","DOI":"10.1177\/1090198106297855","article-title":"Identifying opinion leaders to promote behavior change","volume":"34","author":"Valente","year":"2007","journal-title":"Health Educ. Behav."},{"key":"10.1016\/j.ins.2022.12.071_b0080","doi-asserted-by":"crossref","first-page":"2342","DOI":"10.1109\/TCYB.2014.2306919","article-title":"Collective Learning for the Emergence of Social Norms in Networked Multiagent Systems","volume":"44","author":"Yu","year":"2014","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2022.12.071_b0085","doi-asserted-by":"crossref","unstructured":"S. Wu, Q. Bai, B.H. Kang, Adaptive Incentive Allocation for Influence-Aware Proactive Recommendation, in: PRICAI 2019: Trends in Artificial Intelligence, 2019, pp. 649\u2013661.","DOI":"10.1007\/978-3-030-29908-8_51"},{"key":"10.1016\/j.ins.2022.12.071_b0090","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1007\/s11518-018-5368-6","article-title":"GreenCommute: An Influence-Aware Persuasive Recommendation Approach for Public-Friendly Commute Options","volume":"27","author":"Wu","year":"2018","journal-title":"J. Syst. Sci. Syst. Eng."},{"key":"10.1016\/j.ins.2022.12.071_b0095","doi-asserted-by":"crossref","unstructured":"J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, N. Glance, Cost-Effective Outbreak Detection in Networks, in: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007, pp. 420\u2013429.","DOI":"10.1145\/1281192.1281239"},{"key":"10.1016\/j.ins.2022.12.071_b0100","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2020.03.109","article-title":"An incentive mechanism design for mobile crowdsensing with demand uncertainties","volume":"528","author":"Zhan","year":"2020","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2022.12.071_b0105","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.ins.2019.09.067","article-title":"Incentive mechanism for the listing item task in crowdsourcing","volume":"512","author":"Wang","year":"2020","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2022.12.071_b0110","doi-asserted-by":"crossref","unstructured":"R. Lopez, C. Li, X. Yan, J. Xiong, M.I. Jordan, Y. Qi, L. Song, Cost-Effective Incentive Allocation via Structured Counterfactual Inference, in: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI Press, Palo Alto, CA, USA, 2020, pp. 4997\u20135004.","DOI":"10.1609\/aaai.v34i04.5939"},{"key":"10.1016\/j.ins.2022.12.071_b0115","doi-asserted-by":"crossref","unstructured":"S. Wu, Q. Bai, Incentivizing Long-Term Engagement Under Limited Budget, in: PRICAI 2019: Trends in Artificial Intelligence, 2019, pp. 662\u2013674.","DOI":"10.1007\/978-3-030-29908-8_52"},{"key":"10.1016\/j.ins.2022.12.071_b0120","first-page":"66","article-title":"Redundancy-Aware and Budget-Feasible Incentive Mechanism in Crowd Sensing","volume":"63","author":"Li","year":"2019","journal-title":"Comput. J."},{"key":"10.1016\/j.ins.2022.12.071_b0125","doi-asserted-by":"crossref","unstructured":"L. Tran-Thanh, A. Chapman, J.E. Munoz De Cote Flores Luna, A. Rogers, N.R. Jennings, Epsilon-first policies for budget-limited multi-armed bandits, in: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010, pp. 1211\u20131216.","DOI":"10.1609\/aaai.v24i1.7758"},{"key":"10.1016\/j.ins.2022.12.071_b0130","doi-asserted-by":"crossref","unstructured":"L. Tran-Thanh, A.C. Chapman, A. Rogers, N.R. Jennings, Knapsack based optimal policies for budget-limited multi-armed bandits, in: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012, pp. 1134\u20131140.","DOI":"10.1609\/aaai.v26i1.8279"},{"key":"10.1016\/j.ins.2022.12.071_b0135","unstructured":"Y. Xia, H. Li, T. Qin, N. Yu, T.-Y. Liu, Thompson sampling for budgeted multi-armed bandits, in: Proceedings of the 24th International Conference on Artificial Intelligence, 2015, pp. 3960\u20133966."},{"key":"10.1016\/j.ins.2022.12.071_b0140","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.110060","article-title":"Gac: A deep reinforcement learning model toward user incentivization in unknown social networks","volume":"259","author":"Wu","year":"2023","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2022.12.071_b0145","series-title":"2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)","first-page":"1","article-title":"Online incentive mechanism for mobile crowdsourcing based on two-tiered social crowdsourcing architecture","author":"Xu","year":"2018"},{"key":"10.1016\/j.ins.2022.12.071_b0150","doi-asserted-by":"crossref","first-page":"1661","DOI":"10.1109\/TMC.2018.2865355","article-title":"Social-Network-Assisted Worker Recruitment in Mobile Crowd Sensing","volume":"18","author":"Wang","year":"2019","journal-title":"IEEE Trans. Mob. Comput."},{"key":"10.1016\/j.ins.2022.12.071_b0155","doi-asserted-by":"crossref","first-page":"2055","DOI":"10.1109\/TMC.2020.2973958","article-title":"Socialrecruiter: Dynamic incentive mechanism for mobile crowdsourcing worker recruitment with social networks","volume":"20","author":"Wang","year":"2020","journal-title":"IEEE Trans. Mob. Comput."},{"key":"10.1016\/j.ins.2022.12.071_b0160","doi-asserted-by":"crossref","first-page":"3731","DOI":"10.1109\/TVT.2021.3063380","article-title":"Incentive mechanisms for large-scale crowdsourcing task diffusion based on social influence","volume":"70","author":"Xu","year":"2021","journal-title":"IEEE Trans. Veh. Technol."},{"key":"10.1016\/j.ins.2022.12.071_b0165","doi-asserted-by":"crossref","unstructured":"D. Kempe, J. Kleinberg, \u00c9. Tardos, Maximizing the spread of influence through a social network, in: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 137\u2013146.","DOI":"10.1145\/956750.956769"},{"key":"10.1016\/j.ins.2022.12.071_b0170","doi-asserted-by":"crossref","unstructured":"W. Chen, Y. Wang, S. Yang, Efficient influence maximization in social networks, in: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009, pp. 199\u2013208.","DOI":"10.1145\/1557019.1557047"},{"key":"10.1016\/j.ins.2022.12.071_b0175","doi-asserted-by":"crossref","first-page":"559","DOI":"10.1016\/j.ins.2020.09.002","article-title":"Maximizing positive influence in competitive social networks: A trust-based solution","volume":"546","author":"Wang","year":"2021","journal-title":"Inform. Sci."},{"key":"10.1016\/j.ins.2022.12.071_b0180","doi-asserted-by":"crossref","first-page":"1273","DOI":"10.1016\/j.ins.2020.08.093","article-title":"Attribute based diversification of seeds for targeted influence maximization","volume":"546","author":"Cali\u00f2","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2022.12.071_b0185","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107233","article-title":"Social influence minimization based on context-aware multiple influences diffusion model","volume":"227","author":"Li","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2022.12.071_b0190","doi-asserted-by":"crossref","first-page":"1617","DOI":"10.1016\/j.ins.2022.06.075","article-title":"Influence maximization in social networks using graph embedding and graph neural network","volume":"607","author":"Kumar","year":"2022","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2022.12.071_b0195","doi-asserted-by":"crossref","first-page":"390","DOI":"10.1016\/j.ins.2022.11.041","article-title":"Targeted influence maximization in competitive social networks","author":"Liang","year":"2023","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2022.12.071_b0200","doi-asserted-by":"crossref","unstructured":"S. Mihara, S. Tsugawa, H. Ohsaki, Influence maximization problem for unknown social networks, in: Proceedings of the 2015 IEEE\/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, 2015, pp. 1539\u20131546.","DOI":"10.1145\/2808797.2808885"},{"key":"10.1016\/j.ins.2022.12.071_b0205","unstructured":"H. Kamarthi, P. Vijayan, B. Wilder, B. Ravindran, M. Tambe, Influence Maximization in Unknown Social Networks: Learning Policies for Effective Graph Sampling, in: Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems, 2020, pp. 575\u2013583."},{"key":"10.1016\/j.ins.2022.12.071_b0210","doi-asserted-by":"crossref","unstructured":"C.M. Macal, M.J. North, Agent-based modeling and simulation, in: Proceedings of the 2009 Winter Simulation Conference (WSC), 2009, pp. 86\u201398.","DOI":"10.1109\/WSC.2009.5429318"},{"key":"10.1016\/j.ins.2022.12.071_b0215","doi-asserted-by":"crossref","first-page":"1884","DOI":"10.1109\/TKDE.2018.2867774","article-title":"Automated Influence Maintenance in Social Networks: an Agent-based Approach","volume":"31","author":"Li","year":"2019","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2022.12.071_b0220","doi-asserted-by":"crossref","first-page":"198","DOI":"10.1109\/TSMC.2014.2339198","article-title":"Diffusion in social networks: A multiagent perspective","volume":"45","author":"Jiang","year":"2015","journal-title":"IEEE Trans. Syst., Man, Cybern.: Syst."},{"key":"10.1016\/j.ins.2022.12.071_b0225","unstructured":"W. Li, Q. Bai, M. Zhang, T.D. Nguyen, Modelling Multiple Influences Diffusion in On-line Social Networks, in: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, 2018, pp. 1053\u20131061."},{"key":"10.1016\/j.ins.2022.12.071_b0230","series-title":"Rational Choice Theory: Advocacy and Critique","author":"Coleman","year":"1992"},{"key":"10.1016\/j.ins.2022.12.071_b0235","unstructured":"J. Leskovec, J.J. Mcauley, Learning to discover social circles in ego networks, in: Advances in neural information processing systems, 2012, pp. 539\u2013547."},{"key":"10.1016\/j.ins.2022.12.071_b0240","doi-asserted-by":"crossref","unstructured":"J. Leskovec, D. Huttenlocher, J. Kleinberg, Signed networks in social media, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2010, pp. 1361\u20131370.","DOI":"10.1145\/1753326.1753532"},{"key":"10.1016\/j.ins.2022.12.071_b0245","first-page":"1","article-title":"Graph evolution: Densification and shrinking diameters","volume":"1","author":"Leskovec","year":"2007","journal-title":"ACM Trans. Knowl. Discovery Data"},{"key":"10.1016\/j.ins.2022.12.071_b0250","doi-asserted-by":"crossref","first-page":"4165","DOI":"10.1016\/j.physa.2011.12.021","article-title":"Social structure of Facebook networks","volume":"391","author":"Traud","year":"2012","journal-title":"Physica A"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025522015663?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025522015663?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,5,3]],"date-time":"2023-05-03T05:13:48Z","timestamp":1683090828000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025522015663"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":50,"alternative-id":["S0020025522015663"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2022.12.071","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Identifying influential users in unknown social networks for adaptive incentive allocation under budget restriction","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2022.12.071","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}