{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:41:59Z","timestamp":1732041719825},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100013290","name":"National Key Research and Development Program of China Stem Cell and Translational Research","doi-asserted-by":"publisher","award":["2019YFB2101802","61773324"],"id":[{"id":"10.13039\/501100013290","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1016\/j.ins.2022.07.118","type":"journal-article","created":{"date-parts":[[2022,7,22]],"date-time":"2022-07-22T11:17:53Z","timestamp":1658488673000},"page":"626-643","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Symbolic aggregate approximation based data fusion model for dangerous driving behavior detection"],"prefix":"10.1016","volume":"609","author":[{"given":"Jia","family":"Liu","sequence":"first","affiliation":[]},{"given":"Tianrui","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zhong","family":"Yuan","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Xie","sequence":"additional","affiliation":[]},{"given":"Qianqian","family":"Huang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.ins.2022.07.118_b0005","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1007\/s12469-018-0180-8","article-title":"Automatic recognition of low-quality vehicles and bus stops in bus services","volume":"10","author":"Barabino","year":"2018","journal-title":"Public Transport"},{"key":"10.1016\/j.ins.2022.07.118_b0010","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.eswa.2019.01.001","article-title":"Taxi dispatching strategies with compensations","volume":"122","author":"Billhardt","year":"2019","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2022.07.118_b0015","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.trf.2019.03.017","article-title":"A graphical modeling method for individual driving behavior and its application in driving safety analysis using gps data","volume":"63","author":"Chen","year":"2019","journal-title":"Transp. Res. Part F: Traffic Psychol. Behav."},{"key":"10.1016\/j.ins.2022.07.118_b0020","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1016\/j.jclepro.2019.04.151","article-title":"Optimal pricing and availability strategy of a bike-sharing firm with time-sensitive customers","volume":"228","author":"Chen","year":"2019","journal-title":"J. Clean. Prod."},{"key":"10.1016\/j.ins.2022.07.118_b0025","series-title":"Proceedings of the 7th International Conference on Cloud Computing","first-page":"36","article-title":"A survey on driver behavior detection techniques for intelligent transportation systems","author":"Chhabra","year":"2017"},{"issue":"1","key":"10.1016\/j.ins.2022.07.118_b0030","doi-asserted-by":"crossref","first-page":"85","DOI":"10.2991\/ijcis.d.200120.001","article-title":"A hybrid method for traffic flow forecasting using multimodal deep learning","volume":"13","author":"Du","year":"2020","journal-title":"Int. J. Comput. Intell. Syst."},{"key":"10.1016\/j.ins.2022.07.118_b0035","doi-asserted-by":"crossref","first-page":"782","DOI":"10.1016\/j.trf.2018.06.044","article-title":"Hybrid of discrete wavelet transform and adaptive neuro fuzzy inference system for overall driving behavior recognition","volume":"58","author":"Eftekhari","year":"2018","journal-title":"Transp. Res. Part F: Traffic Psychol. Behav."},{"issue":"1","key":"10.1016\/j.ins.2022.07.118_b0040","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1080\/15472450.2018.1506338","article-title":"A similarity-based neuro-fuzzy modeling for driving behavior recognition applying fusion of smartphone sensors","volume":"23","author":"Eftekhari","year":"2019","journal-title":"J. Intell. Transp. Syst."},{"key":"10.1016\/j.ins.2022.07.118_b0045","series-title":"International Conference on Information Theoretic Security","first-page":"563","article-title":"Real time driver drowsiness detection based on driver\u2019s face image behavior using a system of human computer interaction implemented in a smartphone","author":"Galarza","year":"2018"},{"key":"10.1016\/j.ins.2022.07.118_b0050","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.aap.2014.05.023","article-title":"The prosocial and aggressive driving inventory (padi): A self-report measure of safe and unsafe driving behaviors","volume":"72","author":"Harris","year":"2014","journal-title":"Acc. Anal. Prev."},{"issue":"7","key":"10.1016\/j.ins.2022.07.118_b0055","doi-asserted-by":"crossref","first-page":"6943","DOI":"10.1109\/TVT.2020.2993247","article-title":"Abnormal driving detection with normalized driving behavior data: a deep learning approach","volume":"69","author":"Hu","year":"2020","journal-title":"IEEE Trans. Veh. Technol."},{"issue":"4","key":"10.1016\/j.ins.2022.07.118_b0060","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3161179","article-title":"Safedrive: Detecting distracted driving behaviors using wrist-worn devices","volume":"1","author":"Jiang","year":"2018","journal-title":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies"},{"key":"10.1016\/j.ins.2022.07.118_b0065","doi-asserted-by":"crossref","unstructured":"E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Locally adaptive dimensionality reduction for indexing large time series databases, in: ACM Sigmod Record, vol. 30. ACM, 2001, pp. 151\u2013162.","DOI":"10.1145\/376284.375680"},{"issue":"8","key":"10.1016\/j.ins.2022.07.118_b0070","doi-asserted-by":"crossref","first-page":"5327","DOI":"10.1109\/TII.2019.2960835","article-title":"Dynamical clustering in electronic commerce systems via optimization and leadership expansion","volume":"16","author":"Li","year":"2019","journal-title":"IEEE Trans. Industr. Inf."},{"issue":"2","key":"10.1016\/j.ins.2022.07.118_b0075","first-page":"1","article-title":"Measuring the network vulnerability based on markov criticality","volume":"16","author":"Li","year":"2021","journal-title":"ACM Trans. Knowl. Discovery Data"},{"issue":"6","key":"10.1016\/j.ins.2022.07.118_b0080","doi-asserted-by":"crossref","DOI":"10.1088\/1367-2630\/ab8e5e","article-title":"Optimization of identifiability for efficient community detection","volume":"22","author":"Li","year":"2020","journal-title":"New J. Phys."},{"key":"10.1016\/j.ins.2022.07.118_b0085","article-title":"Optimal estimation of low-rank factors via feature level data fusion of multiplex signal systems","volume":"01","author":"Li","year":"2020","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2022.07.118_b0090","doi-asserted-by":"crossref","DOI":"10.1016\/j.chaos.2021.111294","article-title":"The dynamics of epidemic spreading on signed networks","volume":"151","author":"Li","year":"2021","journal-title":"Chaos, Solitons and Fractals"},{"key":"10.1016\/j.ins.2022.07.118_b0095","series-title":"Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, ACM","first-page":"2","article-title":"A symbolic representation of time series, with implications for streaming algorithms","author":"Lin","year":"2003"},{"key":"10.1016\/j.ins.2022.07.118_b0100","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1016\/j.inffus.2019.06.016","article-title":"Urban big data fusion based on deep learning: An overview","volume":"53","author":"Liu","year":"2020","journal-title":"Inform. Fusion"},{"issue":"3","key":"10.1016\/j.ins.2022.07.118_b0105","doi-asserted-by":"crossref","first-page":"545","DOI":"10.1109\/TITS.2016.2582900","article-title":"Towards detection of bus driver fatigue based on robust visual analysis of eye state","volume":"18","author":"Mandal","year":"2016","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"2","key":"10.1016\/j.ins.2022.07.118_b0110","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1089\/10665270252935539","article-title":"Learning gene functional classifications from multiple data types","volume":"9","author":"Pavlidis","year":"2002","journal-title":"J. Comput. Biol."},{"key":"10.1016\/j.ins.2022.07.118_b0115","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.neucom.2015.06.022","article-title":"An incremental meta-cognitive-based scaffolding fuzzy neural network","volume":"171","author":"Pratama","year":"2016","journal-title":"Neurocomputing"},{"issue":"8","key":"10.1016\/j.ins.2022.07.118_b0120","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1177\/0361198118772958","article-title":"Timetable synchronization and optimization considering time-dependent passenger demand in an urban subway network","volume":"2672","author":"Shang","year":"2018","journal-title":"Transp. Res. Rec."},{"issue":"3","key":"10.1016\/j.ins.2022.07.118_b0125","doi-asserted-by":"crossref","first-page":"1459","DOI":"10.1109\/TITS.2020.2971214","article-title":"A mobile telematics pattern recognition framework for driving behavior extraction","volume":"22","author":"Siami","year":"2020","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"12","key":"10.1016\/j.ins.2022.07.118_b0130","doi-asserted-by":"crossref","first-page":"4023","DOI":"10.1109\/TITS.2018.2803085","article-title":"Citywide spatial-temporal travel time estimation using big and sparse trajectories","volume":"19","author":"Tang","year":"2018","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"6","key":"10.1016\/j.ins.2022.07.118_b0135","doi-asserted-by":"crossref","first-page":"3073","DOI":"10.1109\/TITS.2015.2431293","article-title":"Detection of dangerous cornering in gnss-data-driven insurance telematics","volume":"16","author":"Wahlstr\u00f6m","year":"2015","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"4","key":"10.1016\/j.ins.2022.07.118_b0140","doi-asserted-by":"crossref","first-page":"499","DOI":"10.1109\/TSMC.2013.2256890","article-title":"Discovering and profiling overlapping communities in location-based social networks","volume":"44","author":"Wang","year":"2014","journal-title":"IEEE Trans. Syst., Man, Cybern.: Syst."},{"key":"10.1016\/j.ins.2022.07.118_b0145","series-title":"2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), IEEE","first-page":"266","article-title":"Abnormal driving behavior detection for bus based on the bayesian classifier","author":"Wu","year":"2018"},{"key":"10.1016\/j.ins.2022.07.118_b0150","series-title":"Proceedings of the 24th SIGKDD Conference on Knowledge Discovery and Data Mining","first-page":"965","article-title":"Deep distributed fusion network for air quality prediction","author":"Yi","year":"2018"},{"issue":"8","key":"10.1016\/j.ins.2022.07.118_b0155","doi-asserted-by":"crossref","first-page":"2198","DOI":"10.1109\/TMC.2016.2618873","article-title":"Fine-grained abnormal driving behaviors detection and identification with smartphones","volume":"16","author":"Yu","year":"2016","journal-title":"IEEE Trans. Mobile Comput."},{"key":"10.1016\/j.ins.2022.07.118_b0160","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.fss.2020.10.017","article-title":"Fuzzy information entropy-based adaptive approach for hybrid feature outlier detection","volume":"421","author":"Yuan","year":"2021","journal-title":"Fuzzy Sets Syst."},{"issue":"4","key":"10.1016\/j.ins.2022.07.118_b0165","first-page":"34","volume":"18","author":"Zhang","year":"2016","journal-title":"A social-network-optimized taxi-sharing service. IT professional"},{"key":"10.1016\/j.ins.2022.07.118_b0170","series-title":"Proceedings of the 31th AAAI Conference on Artificial Intelligence","first-page":"1655","article-title":"Deep spatio-temporal residual networks for citywide crowd flows prediction","author":"Zhang","year":"2017"},{"issue":"4","key":"10.1016\/j.ins.2022.07.118_b0175","doi-asserted-by":"crossref","first-page":"2087","DOI":"10.1109\/TII.2017.2674661","article-title":"Safedrive: online driving anomaly detection from large-scale vehicle data","volume":"13","author":"Zhang","year":"2017","journal-title":"IEEE Trans. Industr. Inf."},{"key":"10.1016\/j.ins.2022.07.118_b0180","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.inffus.2020.11.004","article-title":"Multi-source information fusion based on rough set theory: A review","volume":"68","author":"Zhang","year":"2021","journal-title":"Inform. Fusion"},{"key":"10.1016\/j.ins.2022.07.118_b0185","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.inffus.2021.10.017","article-title":"A data-level fusion model for unsupervised attribute selection in multi-source homogeneous data","volume":"80","author":"Zhang","year":"2022","journal-title":"Inform. Fusion"},{"issue":"1","key":"10.1016\/j.ins.2022.07.118_b0190","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1109\/TBDATA.2015.2465959","article-title":"Methodologies for cross-domain data fusion: An overview","volume":"1","author":"Zheng","year":"2015","journal-title":"IEEE Trans. Big Data"},{"issue":"3","key":"10.1016\/j.ins.2022.07.118_b0195","first-page":"1","article-title":"Urban computing:concepts, methodologies, and applications","volume":"5","author":"Zheng","year":"2014","journal-title":"ACM Trans. Intell. Syst. Technol."},{"key":"10.1016\/j.ins.2022.07.118_b0200","series-title":"Proceedings of the 13th international conference on Ubiquitous computing, ACM","first-page":"89","article-title":"Urban computing with taxicabs","author":"Zheng","year":"2011"},{"key":"10.1016\/j.ins.2022.07.118_b0205","series-title":"Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM","first-page":"1","article-title":"Detecting collective anomalies from multiple spatio-temporal datasets across different domains","author":"Zheng","year":"2015"},{"issue":"7","key":"10.1016\/j.ins.2022.07.118_b0210","doi-asserted-by":"crossref","first-page":"651","DOI":"10.1049\/iet-its.2017.0116","article-title":"Urban link travel time estimation using traffic states-based data fusion","volume":"12","author":"Zhu","year":"2018","journal-title":"IET Intel. Transport Syst."},{"key":"10.1016\/j.ins.2022.07.118_b0215","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.trc.2017.05.015","article-title":"A bayesian network model for contextual versus non-contextual driving behavior assessment","volume":"81","author":"Zhu","year":"2017","journal-title":"Transp. Res. Part C: Emerging Technol."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025522008076?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025522008076?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,24]],"date-time":"2023-01-24T16:44:57Z","timestamp":1674578697000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025522008076"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9]]},"references-count":43,"alternative-id":["S0020025522008076"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2022.07.118","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2022,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Symbolic aggregate approximation based data fusion model for dangerous driving behavior detection","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2022.07.118","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}