{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T04:42:01Z","timestamp":1726807321626},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100005230","name":"Chongqing Natural Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100005230","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1016\/j.ins.2022.03.008","type":"journal-article","created":{"date-parts":[[2022,3,11]],"date-time":"2022-03-11T01:17:05Z","timestamp":1646961425000},"page":"125-143","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["Improving nonnegative matrix factorization with advanced graph regularization"],"prefix":"10.1016","volume":"597","author":[{"given":"Xiaoxia","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Degang","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Hong","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Guoyin","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Houjun","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Kesheng","family":"Wu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.ins.2022.03.008_b0005","doi-asserted-by":"crossref","first-page":"896","DOI":"10.1109\/TKDE.2011.15","article-title":"Improving aggregate recommendation diversity using ranking-based techniques","volume":"24","author":"Adomavicius","year":"2012","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"6","key":"10.1016\/j.ins.2022.03.008_b0010","doi-asserted-by":"crossref","first-page":"734","DOI":"10.1109\/TKDE.2005.99","article-title":"Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions","volume":"17","author":"Adomavicius","year":"2005","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"22","key":"10.1016\/j.ins.2022.03.008_b0015","doi-asserted-by":"crossref","first-page":"4290","DOI":"10.1016\/j.ins.2010.07.024","article-title":"A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition","volume":"180","author":"Barragns-Martinez","year":"2010","journal-title":"Inf. Sci."},{"issue":"2","key":"10.1016\/j.ins.2022.03.008_b0020","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1145\/1345448.1345465","article-title":"Lessons from the Netflix prize challenge","volume":"9","author":"Bell","year":"2007","journal-title":"SIGKDD Explor."},{"key":"10.1016\/j.ins.2022.03.008_b0030","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.knosys.2009.01.008","article-title":"Collaborative filtering adapted to recommender systems of e-learning","volume":"22","author":"Bobadilla","year":"2009","journal-title":"Knowl.-Based Syst."},{"issue":"8","key":"10.1016\/j.ins.2022.03.008_b0035","doi-asserted-by":"crossref","first-page":"1548","DOI":"10.1109\/TPAMI.2010.231","article-title":"Graph regularized nonnegative matrix factorization for data representation","volume":"33","author":"Cai","year":"2011","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2022.03.008_b0040","first-page":"412","article-title":"LPGNMF: predicting long non-coding rna and protein interaction using graph regularized nonnegative matrix factorization","volume":"13","author":"Zhang","year":"2018","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinform."},{"issue":"3","key":"10.1016\/j.ins.2022.03.008_b0045","doi-asserted-by":"crossref","first-page":"2441","DOI":"10.1016\/j.eswa.2010.08.033","article-title":"A highly adaptive recommender system based on fuzzy logic for b2c e-commerce portals","volume":"38","author":"Castro-Sanchez","year":"2011","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2022.03.008_b0050","first-page":"303","article-title":"Collaborative filtering using orthogonal nonnegative matrix tri-factorization, Data Mining Workshops, 2007 ICDM Workshops 2007","volume":"2007","author":"Chen","year":"2007","journal-title":"Seventh IEEE International Conference on IEEE"},{"key":"10.1016\/j.ins.2022.03.008_b0055","article-title":"Spectral Graph Theory","author":"Chung","year":"1997","journal-title":"Am. Math. Soc."},{"issue":"1","key":"10.1016\/j.ins.2022.03.008_b0060","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1977.tb01600.x","article-title":"Maximum likelihood from incomplete data via the Em algorithm","volume":"39","author":"Dempster","year":"1977","journal-title":"J. R. Stat. Soc. Ser. B (Methodological)"},{"key":"10.1016\/j.ins.2022.03.008_b0065","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/TPAMI.2008.277","article-title":"Convex and semi-nonnegative matrix-factorizations","volume":"32","author":"Ding","year":"2010","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2022.03.008_b0070","article-title":"Scalable recommendations with poisson factorization","author":"Gopalan","year":"2013","journal-title":"Eprint Arxiv"},{"issue":"7","key":"10.1016\/j.ins.2022.03.008_b0075","doi-asserted-by":"crossref","first-page":"1087","DOI":"10.1109\/TNNLS.2012.2197827","article-title":"Online nonnegative matrix factorization with robust stochastic approximation","volume":"23","author":"Guan","year":"2012","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"year":"2005","series-title":"Accelerating the Lee-Seung algorithm for non-negative matrix factorization","author":"Gonzales","key":"10.1016\/j.ins.2022.03.008_b0080"},{"key":"10.1016\/j.ins.2022.03.008_b0085","doi-asserted-by":"crossref","first-page":"188","DOI":"10.1016\/j.knosys.2015.12.018","article-title":"A non negative matrix factorization for collaborative filtering recommender systems based on a Bayesian probabilistic model","volume":"97","author":"Hernando","year":"2016","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2022.03.008_b0095","doi-asserted-by":"crossref","unstructured":"M. Jamali, M. Ester, A matrix factorization technique with trust propagation for recommendation in social networks, Proc. ACM Conf. RecSys, Barcelona, Spain, 2010, 135-142.","DOI":"10.1145\/1864708.1864736"},{"key":"10.1016\/j.ins.2022.03.008_b0100","series-title":"Proc 21st ACM International Conference on Information and Knowledge Management, New York, NY, USA","first-page":"45","article-title":"Social contextual recommendation","author":"Jiang","year":"2012"},{"key":"10.1016\/j.ins.2022.03.008_b0105","series-title":"Recommender Systems Handbook","first-page":"145","article-title":"Advances in collaborative-filtering","author":"Koren","year":"2011"},{"issue":"8","key":"10.1016\/j.ins.2022.03.008_b0110","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1109\/MC.2009.263","article-title":"Matrix factorization techniques for recommender systems","volume":"42","author":"Koren","year":"2009","journal-title":"Computer"},{"issue":"11","key":"10.1016\/j.ins.2022.03.008_b0115","doi-asserted-by":"crossref","first-page":"2142","DOI":"10.1016\/j.ins.2010.02.004","article-title":"Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations","volume":"180","author":"Lee","year":"2010","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2022.03.008_b0120","doi-asserted-by":"crossref","first-page":"2237","DOI":"10.1016\/j.patcog.2011.12.015","article-title":"Graph dual regularization non-negative matrix factorization for co-clustering","volume":"45","author":"Shang","year":"2012","journal-title":"Pattern Recogn."},{"year":"2001","series-title":"Algorithms for non-negative matrix factorization, Advances in Neural Information Processing Systems, 13","author":"Lee","key":"10.1016\/j.ins.2022.03.008_b0125"},{"key":"10.1016\/j.ins.2022.03.008_b0130","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1038\/44565","article-title":"Learning the parts of objects by nonnegative matrix factorization","volume":"401","author":"Lee","year":"1999","journal-title":"Nature"},{"issue":"3","key":"10.1016\/j.ins.2022.03.008_b0135","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1117\/1.3184771","article-title":"FastNMF: Highly efficient monotonic fixed-point nonnegative matrix factorization algorithm with good applicability","volume":"18","author":"Li","year":"2009","journal-title":"J. Electron. Imaging"},{"issue":"10","key":"10.1016\/j.ins.2022.03.008_b0140","doi-asserted-by":"crossref","first-page":"2756","DOI":"10.1162\/neco.2007.19.10.2756","article-title":"Projected gradient methods for nonnegative matrix factorization","volume":"19","author":"Lin","year":"2007","journal-title":"Neural Comput."},{"issue":"6","key":"10.1016\/j.ins.2022.03.008_b0145","doi-asserted-by":"crossref","first-page":"1589","DOI":"10.1109\/TNN.2007.895831","article-title":"On the convergence of multiplicative update algorithms for non-negative matrix factorization","volume":"18","author":"Lin","year":"2007","journal-title":"IEEE Trans. Neural Networks"},{"issue":"5","key":"10.1016\/j.ins.2022.03.008_b0150","doi-asserted-by":"crossref","DOI":"10.1109\/TIP.2016.2542919","article-title":"Low-rank matrix factorization with adaptive graph regularizer","volume":"25","author":"Lu","year":"2016","journal-title":"IEEE Trans. Image Process."},{"issue":"2","key":"10.1016\/j.ins.2022.03.008_b0155","article-title":"An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems","volume":"10","author":"Luo","year":"2014","journal-title":"IEEE Trans. Industr. Inf."},{"key":"10.1016\/j.ins.2022.03.008_b0165","series-title":"Proceedings of the fourth ACM international conference on Web search and data mining","first-page":"287","article-title":"Recommender systems with social regularization","author":"Ma","year":"2011"},{"key":"10.1016\/j.ins.2022.03.008_b0170","series-title":"Proceedings of the 4th ACM SIGCOMM conference on Internet measurement","first-page":"278","article-title":"Modeling distances in large-scale networks by matrix factorization","author":"Mao","year":"2004"},{"issue":"4","key":"10.1016\/j.ins.2022.03.008_b0175","doi-asserted-by":"crossref","first-page":"1186","DOI":"10.1016\/j.chb.2012.02.001","article-title":"Implicit feedback techniques on recommender systems applied to electronic books","volume":"28","author":"Nuez-Valdaz","year":"2012","journal-title":"Comput. Human Behav."},{"issue":"2","key":"10.1016\/j.ins.2022.03.008_b0180","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1002\/env.3170050203","article-title":"Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values","volume":"5","author":"Paatero","year":"1994","journal-title":"Environmetrics"},{"key":"10.1016\/j.ins.2022.03.008_b0185","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1016\/j.knosys.2015.05.009","article-title":"Compressed knowledge transfer via factorization machine for heterogeneous collaborative recommendation","volume":"85","author":"Pan","year":"2015","journal-title":"Knowl.-Based Syst."},{"issue":"7","key":"10.1016\/j.ins.2022.03.008_b0190","doi-asserted-by":"crossref","first-page":"1763","DOI":"10.1109\/TKDE.2013.168","article-title":"Personalized recommendation combining user interest and social circle","volume":"26","author":"Qian","year":"2014","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2022.03.008_b0195","unstructured":"R. Salakhutdinov, A. Mnih, Probabilistic matrix factorization, Proc. NIPS, 2008."},{"key":"10.1016\/j.ins.2022.03.008_b0205","unstructured":"L. Saul, F. Pereira, Aggregate and mixed-order Markov models for statistical language processing, C. Cardie and R. Weischedel (eds). Proceedings of the Second Conference on Empirical Methods in Natural Language Processing, ACL Press, 1997, pp. 81\u201389."},{"key":"10.1016\/j.ins.2022.03.008_b0210","doi-asserted-by":"crossref","first-page":"428","DOI":"10.1109\/TSMCA.2012.2210409","article-title":"Predicting quality of service for selection by neighborhood-based collaborative-filtering","volume":"43","author":"Wu","year":"2013","journal-title":"IEEE Trans. Syst. Man Cybern. Syst."},{"key":"10.1016\/j.ins.2022.03.008_b0215","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1016\/j.knosys.2015.06.026","article-title":"NMFE-SSCC: Non-negative matrix factorization ensemble for semi-supervised collective classification","volume":"89","author":"Wu","year":"2015","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2022.03.008_b0220","first-page":"267","article-title":"Document clustering based on nonnegative matrix factorization","author":"Xu","year":"2003","journal-title":"International ACM SIGIR Conference on Research and Development in Informaion Retrieval"},{"key":"10.1016\/j.ins.2022.03.008_b0225","series-title":"Circle-based recommendation in online social networks, Proc. 18th ACM SIGKDD Int","first-page":"1267","author":"Yang","year":"2012"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025522002079?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025522002079?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T02:24:47Z","timestamp":1726799087000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025522002079"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":41,"alternative-id":["S0020025522002079"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2022.03.008","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2022,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Improving nonnegative matrix factorization with advanced graph regularization","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2022.03.008","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}