{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T08:48:41Z","timestamp":1742806121078,"version":"3.37.3"},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2022,5]]},"DOI":"10.1016\/j.ins.2022.02.050","type":"journal-article","created":{"date-parts":[[2022,2,28]],"date-time":"2022-02-28T15:57:27Z","timestamp":1646063847000},"page":"217-230","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["SDNN: Symmetric deep neural networks with lateral connections for recommender systems"],"prefix":"10.1016","volume":"595","author":[{"given":"Runzhi","family":"Xu","sequence":"first","affiliation":[]},{"given":"Jianjun","family":"Li","sequence":"additional","affiliation":[]},{"given":"Guohui","family":"Li","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Pan","sequence":"additional","affiliation":[]},{"given":"Quan","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Chaoyang","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2016","author":"Aggarwal","series-title":"Recommender Systems: The Textbook","key":"10.1016\/j.ins.2022.02.050_b0005"},{"key":"10.1016\/j.ins.2022.02.050_b0010","series-title":"Proceedings of the 1st Workshop on Deep Learning for Recommender Systems","first-page":"7","article-title":"Wide & deep learning for recommender systems","author":"Cheng","year":"2016"},{"issue":"2","key":"10.1016\/j.ins.2022.02.050_b0015","doi-asserted-by":"crossref","first-page":"475","DOI":"10.1007\/s41870-020-00553-2","article-title":"Multimodal trust based recommender system with machine learning approaches for movie recommendation","volume":"13","author":"Choudhury","year":"2021","journal-title":"Int. J. Inform. Technol."},{"key":"10.1016\/j.ins.2022.02.050_b0020","series-title":"Proceedings of International Conference on Machine Learning (ICML)","first-page":"160","article-title":"A unified architecture for natural language processing: deep neural networks with multitask learning","author":"Collobert","year":"2008"},{"key":"10.1016\/j.ins.2022.02.050_b0025","series-title":"Proceedings of AAAI Conference on Artificial Intelligence (AAAI)","first-page":"61","article-title":"Deepcf: A unified framework of representation learning and matching function learning in recommender system","author":"Deng","year":"2019"},{"key":"10.1016\/j.ins.2022.02.050_b0030","series-title":"Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI)","first-page":"1309","article-title":"A hybrid collaborative filtering model with deep structure for recommender systems","author":"Dong","year":"2017"},{"key":"10.1016\/j.ins.2022.02.050_b0035","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.knosys.2018.10.019","article-title":"A recommender system for component-based applications using machine learning techniques","volume":"164","author":"Fern\u00e1ndez-Garc\u00eda","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2022.02.050_b0040","series-title":"Proc. of International Joint Conference on Artificial Intelligence","first-page":"1725","article-title":"Deepfm: a factorization-machine based neural network for ctr prediction","author":"Guo","year":"2017"},{"key":"10.1016\/j.ins.2022.02.050_b0045","series-title":"Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.ins.2022.02.050_b0050","series-title":"Proc. of SIGIR","first-page":"355","article-title":"Neural factorization machines for sparse predictive analytics","author":"He","year":"2017"},{"key":"10.1016\/j.ins.2022.02.050_b0055","series-title":"Proc. of WWW","first-page":"173","article-title":"Neural collaborative filtering","author":"He","year":"2017"},{"doi-asserted-by":"crossref","unstructured":"X. He, H. Zhang, M.Y. Kan, T.S. Chua, Fast matrix factorization for online recommendation with implicit feedback, 2016, pp. 549\u2013558.","key":"10.1016\/j.ins.2022.02.050_b0060","DOI":"10.1145\/2911451.2911489"},{"issue":"5","key":"10.1016\/j.ins.2022.02.050_b0065","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/0893-6080(89)90020-8","article-title":"Multilayer feedforward networks are universal approximators","volume":"2","author":"Hornik","year":"1989","journal-title":"Neural Networks"},{"key":"10.1016\/j.ins.2022.02.050_b0070","series-title":"Proceedings of ACM RecSys","first-page":"43","article-title":"Field-aware factorization machines for ctr prediction","author":"Juan","year":"2016"},{"key":"10.1016\/j.ins.2022.02.050_b0075","series-title":"Proceedings of ACM Conference on Recommender Systems","first-page":"233","article-title":"Convolutional matrix factorization for document context-aware recommendation","author":"Kim","year":"2016"},{"key":"10.1016\/j.ins.2022.02.050_b0080","series-title":"Proc. of ICLR","first-page":"1","article-title":"Adam: A method for stochastic optimization","author":"Kingma","year":"2014"},{"key":"10.1016\/j.ins.2022.02.050_b0085","series-title":"Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD)","first-page":"426","article-title":"Factorization meets the neighborhood: A multifaceted collaborative filtering model","author":"Koren","year":"2008"},{"doi-asserted-by":"crossref","unstructured":"Y. Koren, R. Bell, V.C., 2009. Matrix factorization techniques for recommender systems. Computer 42 (8), 30\u201337.","key":"10.1016\/j.ins.2022.02.050_b0090","DOI":"10.1109\/MC.2009.263"},{"key":"10.1016\/j.ins.2022.02.050_b0095","series-title":"Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM)","first-page":"811","article-title":"Deep collaborative filtering via marginalized denoising auto-encoder","author":"Li","year":"2015"},{"key":"10.1016\/j.ins.2022.02.050_b0100","series-title":"Proc. of SIGKDD","first-page":"1754","article-title":"xdeepfm: Combining explicit and implicit feature interactions for recommender systems","author":"Lian","year":"2018"},{"key":"10.1016\/j.ins.2022.02.050_b0105","series-title":"Proc. of IEEE 16th International Conference on Data Mining (ICDM)","first-page":"1149","article-title":"Product-based neural networks for user response prediction","author":"Qu","year":"2016"},{"unstructured":"A. Rasmus, M. Berglund, M. Honkala, H. Valpola, T. Raiko, Semi-supervised learning with ladder networks. In: Advances in neural information processing systems, 2015, pp. 3546\u20133554.","key":"10.1016\/j.ins.2022.02.050_b0110"},{"issue":"4","key":"10.1016\/j.ins.2022.02.050_b0115","first-page":"555","article-title":"Denoising autoencoder with modulated lateral connections learns invariant representations of natural images","volume":"31","author":"Rasmus","year":"2014","journal-title":"Eprint Arxiv"},{"key":"10.1016\/j.ins.2022.02.050_b0120","series-title":"2010 IEEE International Conference on Data Mining","first-page":"995","article-title":"Factorization machines","author":"Rendle","year":"2010"},{"key":"10.1016\/j.ins.2022.02.050_b0125","series-title":"Proceedings of the twenty-fifth Conference on Uncertainty in Artificial Intelligence","first-page":"452","article-title":"Bpr: Bayesian personalized ranking from implicit feedback","author":"Rendle","year":"2009"},{"key":"10.1016\/j.ins.2022.02.050_b0130","series-title":"Proceedings of WSDM","first-page":"81","article-title":"Pairwise interaction tensor factorization for personalized tag recommendation","author":"Rendle","year":"2010"},{"key":"10.1016\/j.ins.2022.02.050_b0135","series-title":"Proceedings of the 8th IEEE International Conference on Data Mining (ICDM)","first-page":"502","article-title":"One-class collaborative filtering","author":"Rong","year":"2008"},{"issue":"2","key":"10.1016\/j.ins.2022.02.050_b0140","first-page":"1257","article-title":"Probabilistic matrix factorization","volume":"20","author":"Salakhutdinov","year":"2007","journal-title":"Adv. Neural Inform. Process. Syst."},{"key":"10.1016\/j.ins.2022.02.050_b0145","doi-asserted-by":"crossref","first-page":"791","DOI":"10.1145\/1273496.1273596","article-title":"Restricted boltzmann machines for collaborative filtering","volume":"227","author":"Salakhutdinov","year":"2007","journal-title":"Proceedings of the Twenty-Fourth International Conference on Machine Learning (ICML)"},{"key":"10.1016\/j.ins.2022.02.050_b0150","series-title":"Proceedings of the Tenth International World Wide Web Conference (WWW). ACM","first-page":"285","article-title":"Item-based collaborative filtering recommendation algorithms","author":"Sarwar","year":"2001"},{"key":"10.1016\/j.ins.2022.02.050_b0155","series-title":"Proceedings of the 24th International Conference on World Wide Web Companion. ACM","first-page":"111","article-title":"Autorec: Autoencoders meet collaborative filtering","author":"Sedhain","year":"2015"},{"key":"10.1016\/j.ins.2022.02.050_b0160","series-title":"Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI)","first-page":"2712","article-title":"Exploiting local and global social context for recommendation","author":"Tang","year":"2013"},{"key":"10.1016\/j.ins.2022.02.050_b0165","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/j.ins.2020.03.102","article-title":"An endorsement-based trust bootstrapping approach for newcomer cloud services","volume":"527","author":"Wahab","year":"2020","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2022.02.050_b0170","series-title":"Proc. of ADKDD@KDD","first-page":"12:1","article-title":"Deep & cross network for ad click predictions","author":"Wang","year":"2017"},{"key":"10.1016\/j.ins.2022.02.050_b0175","series-title":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)","first-page":"165","article-title":"Neural graph collaborative filtering","author":"Wang","year":"2019"},{"key":"10.1016\/j.ins.2022.02.050_b0180","series-title":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining (WSDM). ACM","first-page":"153","article-title":"Collaborative denoising auto-encoders for top-n recommender systems","author":"Wu","year":"2016"},{"key":"10.1016\/j.ins.2022.02.050_b0185","series-title":"Proc. of IJCAI","first-page":"3203","article-title":"Deep matrix factorization models for recommender systems","author":"Xue","year":"2017"},{"key":"10.1016\/j.ins.2022.02.050_b0190","series-title":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining (WSDM)","first-page":"153","article-title":"Collaborative denoising auto-encoders for top-n recommender systems","author":"Yao","year":"2016"},{"key":"10.1016\/j.ins.2022.02.050_b0195","doi-asserted-by":"crossref","DOI":"10.1016\/j.simpat.2020.102198","article-title":"Intelligent recommender system based on unsupervised machine learning and demographic attributes","volume":"107","author":"Yassine","year":"2021","journal-title":"Simul. Model. Pract. Theory"},{"key":"10.1016\/j.ins.2022.02.050_b0200","series-title":"Proc. of European conference on information retrieval","first-page":"45","article-title":"Deep learning over multi-field categorical data","author":"Zhang","year":"2016"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002002552200192X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002002552200192X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,28]],"date-time":"2023-01-28T12:31:28Z","timestamp":1674909088000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S002002552200192X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,5]]},"references-count":40,"alternative-id":["S002002552200192X"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2022.02.050","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2022,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"SDNN: Symmetric deep neural networks with lateral connections for recommender systems","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2022.02.050","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}