{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:26:44Z","timestamp":1732040804391},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61890930","61890930\u20132","61973321"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004735","name":"Natural Science Foundation of\u00a0Hunan Province","doi-asserted-by":"publisher","award":["2019JJ50823"],"id":[{"id":"10.13039\/501100004735","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2019YFB1704703"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2021,11]]},"DOI":"10.1016\/j.ins.2021.09.056","type":"journal-article","created":{"date-parts":[[2021,9,27]],"date-time":"2021-09-27T05:19:50Z","timestamp":1632719990000},"page":"917-933","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":22,"special_numbering":"C","title":["Multi-models and dual-sampling periods quality prediction with time-dimensional K-means and state transition-LSTM network"],"prefix":"10.1016","volume":"580","author":[{"given":"Xiongtao","family":"Shi","sequence":"first","affiliation":[]},{"given":"Yonggang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Yanhua","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Bei","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Fang","family":"Qi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2021.09.056_b0005","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.ins.2021.03.026","article-title":"Deep learning with neighborhood preserving embedding regularization and its application for soft sensor in an industrial hydrocracking process","volume":"567","author":"Liu","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.09.056_b0010","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2020.05.028","article-title":"Input selection methods for data-driven soft sensors design: Application to an industrial process","volume":"537","author":"Curreri","year":"2020","journal-title":"Inf. Sci."},{"issue":"12","key":"10.1016\/j.ins.2021.09.056_b0015","doi-asserted-by":"crossref","first-page":"7233","DOI":"10.1109\/TII.2018.2880968","article-title":"Deep learning of complex batch process data and its application on quality prediction","volume":"16","author":"Wang","year":"2020","journal-title":"IEEE Trans. Industr. Inf."},{"key":"10.1016\/j.ins.2021.09.056_b0020","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1016\/j.ins.2020.07.031","article-title":"Information synergy entropy based multi-feature information fusion for the operating condition identification in aluminium electrolysis","volume":"548","author":"Chen","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.09.056_b0025","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1016\/j.jprocont.2018.06.005","article-title":"A data-driven optimal control approach for solution purification process","volume":"68","author":"Sun","year":"2018","journal-title":"J. Process Control"},{"issue":"1","key":"10.1016\/j.ins.2021.09.056_b0030","first-page":"73","article-title":"Machine learning based analysis for relation between global temperature and concentrations of greenhouse gases","volume":"41","author":"Kalra","year":"2020","journal-title":"J. Inform. Optim. Sci."},{"key":"10.1016\/j.ins.2021.09.056_b0035","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.aei.2018.03.003","article-title":"Soft sensor based on stacked auto-encoder deep neural network for air preheater rotor deformation prediction","volume":"36","author":"Wang","year":"2018","journal-title":"Adv. Eng. Inform."},{"issue":"4","key":"10.1016\/j.ins.2021.09.056_b0040","doi-asserted-by":"crossref","first-page":"795","DOI":"10.1016\/j.compchemeng.2008.12.012","article-title":"Data-driven soft sensors in the process industry","volume":"33","author":"Kadlec","year":"2009","journal-title":"Computers Chem. Eng."},{"key":"10.1016\/j.ins.2021.09.056_b0045","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.ins.2020.03.018","article-title":"Stacked isomorphic autoencoder based soft analyzer and its application to sulfur recovery unit","volume":"534","author":"Yuan","year":"2020","journal-title":"Inf. Sci."},{"issue":"6","key":"10.1016\/j.ins.2021.09.056_b0050","doi-asserted-by":"crossref","first-page":"1202","DOI":"10.1016\/j.compchemeng.2008.12.009","article-title":"Nonlinear control of debutanizer column using profile position observer","volume":"33","author":"Gupta","year":"2009","journal-title":"Computers Chem. Eng."},{"issue":"1\u20132","key":"10.1016\/j.ins.2021.09.056_b0055","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.compchemeng.2007.07.005","article-title":"Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry","volume":"32","author":"Kano","year":"2008","journal-title":"Computers Chem. Eng."},{"issue":"3","key":"10.1016\/j.ins.2021.09.056_b0060","doi-asserted-by":"crossref","first-page":"1046","DOI":"10.1109\/TASE.2018.2865593","article-title":"Multitasking multiobjective evolutionary operational indices optimization of beneficiation processes","volume":"16","author":"Yang","year":"2018","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"key":"10.1016\/j.ins.2021.09.056_b0065","doi-asserted-by":"crossref","first-page":"302","DOI":"10.1016\/j.ins.2020.06.062","article-title":"Distributed-ensemble stacked autoencoder model for non-linear process monitoring","volume":"542","author":"Li","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.09.056_b0070","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.chemolab.2015.12.011","article-title":"Review of soft sensor methods for regression applications","volume":"152","author":"Souza","year":"2016","journal-title":"Chemometrics Intelligent Laboratory Systems"},{"key":"10.1016\/j.ins.2021.09.056_b0075","unstructured":"P. Cheng, S. He, V. Stojanovic, X. Luan, F. Liu, Fuzzy fault detection for markov jump systems with partly accessible hidden information: An event-triggered approach, IEEE Transactions on Cybernetics."},{"key":"10.1016\/j.ins.2021.09.056_b0080","unstructured":"H. Fang, G. Zhu, V. Stojanovic, R. Nie, S. He, X. Luan, F. Liu, Adaptive optimization algorithm for nonlinear markov jump systems with partial unknown dynamics, International Journal of Robust and Nonlinear Control."},{"issue":"2","key":"10.1016\/j.ins.2021.09.056_b0085","doi-asserted-by":"crossref","first-page":"671","DOI":"10.1007\/s11045-020-00754-9","article-title":"Robust pd-type iterative learning control for discrete systems with multiple time-delays subjected to polytopic uncertainty and restricted frequency-domain","volume":"32","author":"Tao","year":"2021","journal-title":"Multidimension. Syst. Signal Process."},{"issue":"2","key":"10.1016\/j.ins.2021.09.056_b0090","doi-asserted-by":"crossref","first-page":"1733","DOI":"10.1007\/s11071-021-06208-6","article-title":"Input-to-state stability of impulsive reaction\u2013diffusion neural networks with infinite distributed delays","volume":"103","author":"Wei","year":"2021","journal-title":"Nonlinear Dyn."},{"key":"10.1016\/j.ins.2021.09.056_b0095","unstructured":"L. Ren, Z. Meng, X. Wang, L. Zhang, L.T. Yang, A data-driven approach of product quality prediction for complex production systems, IEEE Transactions on Industrial Informatics."},{"key":"10.1016\/j.ins.2021.09.056_b0100","series-title":"Advances in Neural Network Research and Applications","first-page":"803","article-title":"Soft sensor modeling of ball mill load via principal component analysis and support vector machines","author":"Tang","year":"2010"},{"issue":"2","key":"10.1016\/j.ins.2021.09.056_b0105","doi-asserted-by":"crossref","first-page":"1559","DOI":"10.1109\/TIE.2017.2733501","article-title":"Fault detection for non-gaussian processes using generalized canonical correlation analysis and randomized algorithms","volume":"65","author":"Chen","year":"2017","journal-title":"IEEE Trans. Industr. Electron."},{"issue":"2","key":"10.1016\/j.ins.2021.09.056_b0110","doi-asserted-by":"crossref","first-page":"1134","DOI":"10.1109\/TIE.2011.2159693","article-title":"Modeling of the thermal state change of blast furnace hearth with support vector machines","volume":"59","author":"Gao","year":"2011","journal-title":"IEEE Trans. Industr. Electron."},{"issue":"1","key":"10.1016\/j.ins.2021.09.056_b0115","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1109\/TIM.2006.887331","article-title":"Virtual instruments based on stacked neural networks to improve product quality monitoring in a refinery","volume":"56","author":"Fortuna","year":"2007","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"3","key":"10.1016\/j.ins.2021.09.056_b0120","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1016\/j.jprocont.2014.01.012","article-title":"Data-driven soft sensor development based on deep learning technique","volume":"24","author":"Shang","year":"2014","journal-title":"J. Process Control"},{"issue":"12","key":"10.1016\/j.ins.2021.09.056_b0125","first-page":"3371","article-title":"Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion","volume":"11","author":"Vincent","year":"2010","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.ins.2021.09.056_b0130","first-page":"1","article-title":"A deep supervised learning framework for data-driven soft sensor modeling of industrial processes","author":"Yuan","year":"2019","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"issue":"7","key":"10.1016\/j.ins.2021.09.056_b0135","doi-asserted-by":"crossref","first-page":"3235","DOI":"10.1109\/TII.2018.2809730","article-title":"Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted sae","volume":"14","author":"Yuan","year":"2018","journal-title":"IEEE Trans. Industr. Inf."},{"issue":"5","key":"10.1016\/j.ins.2021.09.056_b0140","doi-asserted-by":"crossref","first-page":"3168","DOI":"10.1109\/TII.2019.2902129","article-title":"Nonlinear dynamic soft sensor modeling with supervised long short-term memory network","volume":"16","author":"Yuan","year":"2019","journal-title":"IEEE Trans. Industr. Inf."},{"issue":"5","key":"10.1016\/j.ins.2021.09.056_b0145","doi-asserted-by":"crossref","first-page":"2700","DOI":"10.1109\/TII.2018.2869899","article-title":"Probabilistic sequential network for deep learning of complex process data and soft sensor application","volume":"15","author":"Sun","year":"2018","journal-title":"IEEE Trans. Industr. Inf."},{"issue":"10","key":"10.1016\/j.ins.2021.09.056_b0150","doi-asserted-by":"crossref","first-page":"2222","DOI":"10.1109\/TNNLS.2016.2582924","article-title":"Lstm: A search space odyssey","volume":"28","author":"Greff","year":"2016","journal-title":"IEEE Trans. Neural Networks Learning Syst."},{"issue":"7","key":"10.1016\/j.ins.2021.09.056_b0155","first-page":"2972","article-title":"A review of k-mean algorithm","volume":"4","author":"Yadav","year":"2013","journal-title":"Int. J. Eng. Trends Technol."},{"key":"10.1016\/j.ins.2021.09.056_b0160","first-page":"310","article-title":"Activation functions in neural networks, Towards Data","volume":"6","author":"Sharma","year":"2017","journal-title":"Science"},{"issue":"6","key":"10.1016\/j.ins.2021.09.056_b0165","doi-asserted-by":"crossref","first-page":"3721","DOI":"10.1109\/TII.2019.2938890","article-title":"Hierarchical quality-relevant feature representation for soft sensor modeling: a novel deep learning strategy","volume":"16","author":"Yuan","year":"2019","journal-title":"IEEE Trans. Industr. Inf."},{"key":"10.1016\/j.ins.2021.09.056_b0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2019.105006","article-title":"Non-ferrous metals price forecasting based on variational mode decomposition and lstm network","volume":"188","author":"Liu","year":"2020","journal-title":"Knowl.-Based Syst."},{"issue":"1","key":"10.1016\/j.ins.2021.09.056_b0175","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1109\/70.744608","article-title":"Modeling and controlling variation propagation in mechanical assemblies using state transition models","volume":"15","author":"Mantripragada","year":"1999","journal-title":"IEEE Trans. Robotics Autom."},{"issue":"6","key":"10.1016\/j.ins.2021.09.056_b0180","doi-asserted-by":"crossref","first-page":"916","DOI":"10.1016\/j.jprocont.2014.04.007","article-title":"Multi-mode acid concentration prediction models of cold-rolled strip steel pickling process","volume":"24","author":"Fei","year":"2014","journal-title":"J. Process Control"},{"key":"10.1016\/j.ins.2021.09.056_b0185","series-title":"Proceedings of the 2012 conference on information and computer networks","first-page":"221","article-title":"Dynamic clustering of data with modified k-means algorithm","author":"Shafeeq","year":"2012"},{"key":"10.1016\/j.ins.2021.09.056_b0190","series-title":"International conference on machine learning","first-page":"1310","article-title":"On the difficulty of training recurrent neural networks","author":"Pascanu","year":"2013"},{"key":"10.1016\/j.ins.2021.09.056_b0195","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1016\/j.neucom.2019.11.022","article-title":"Optimizing zinc electrowinning processes with current switching via deep deterministic policy gradient learning","volume":"380","author":"Shi","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2021.09.056_b0200","unstructured":"D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980."},{"key":"10.1016\/j.ins.2021.09.056_b0205","series-title":"Soft sensors for monitoring and control of industrial processes","author":"Fortuna","year":"2007"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521009932?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521009932?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,24]],"date-time":"2022-12-24T15:39:57Z","timestamp":1671896397000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025521009932"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11]]},"references-count":41,"alternative-id":["S0020025521009932"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2021.09.056","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2021,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multi-models and dual-sampling periods quality prediction with time-dimensional K-means and state transition-LSTM network","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2021.09.056","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}