{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,31]],"date-time":"2024-08-31T06:33:48Z","timestamp":1725086028215},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100002322","name":"Coordena\u00e7\u00e3o de Aperfei\u00e7oamento de Pessoal de N\u00edvel Superior","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002322","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003593","name":"Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004586","name":"Funda\u00e7\u00e3o Carlos Chagas Filho de Amparo \u00e0 Pesquisa do Estado do Rio de Janeiro","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004586","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2021,11]]},"DOI":"10.1016\/j.ins.2021.07.066","type":"journal-article","created":{"date-parts":[[2021,7,21]],"date-time":"2021-07-21T17:17:00Z","timestamp":1626887820000},"page":"702-724","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Multimodal soccer highlight identification using a sparse subset of frames integrating long-term sliding windows"],"prefix":"10.1016","volume":"578","author":[{"given":"Carolina L.","family":"Bez","sequence":"first","affiliation":[]},{"given":"Jo\u00e3o B.O.","family":"Souza Filho","sequence":"additional","affiliation":[]},{"given":"Luiz G.L.B.M.","family":"de Vasconcelos","sequence":"additional","affiliation":[]},{"given":"Thiago","family":"Frensch","sequence":"additional","affiliation":[]},{"given":"Eduardo A.B.","family":"da Silva","sequence":"additional","affiliation":[]},{"given":"Sergio L.","family":"Netto","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2021.07.066_b0005","doi-asserted-by":"crossref","first-page":"1212","DOI":"10.1109\/TCSVT.2017.2655624","article-title":"A survey of content-aware video analysis for sports","volume":"28","author":"Shih","year":"2018","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.ins.2021.07.066_b0010","series-title":"The Elements of Statistical Learning: Data Mining, Inference, and Prediction","author":"Hastie","year":"2009"},{"key":"10.1016\/j.ins.2021.07.066_b0015","doi-asserted-by":"crossref","unstructured":"N. Nguyen, A. Yoshitaka, Soccer video summarization based on cinematography and motion analysis, in: Proceedings of IEEE International Workshop on Multimedia Signal Processing, 2014, pp. 1\u20136. https:\/\/doi.org\/10.1109\/MMSP.2014.6958804.","DOI":"10.1109\/MMSP.2014.6958804"},{"key":"10.1016\/j.ins.2021.07.066_b0020","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1109\/TBC.2015.2424011","article-title":"Bayesian network-based customized highlight generation for broadcast soccer videos","volume":"61","author":"Kolekar","year":"2015","journal-title":"IEEE Trans. Broadcast."},{"key":"10.1016\/j.ins.2021.07.066_b0025","doi-asserted-by":"crossref","unstructured":"J. Assfalg, M. Bertini, A. Del Bimbo, W. Nunziati, P. Pala, Detection and recognition of football highlights using HMM, in: Proceedings of International Conference on Electronics, Circuits and Systems, volume 3, 2002, pp. 1059\u20131062. https:\/\/doi.org\/10.1109\/ICECS.2002.1046433.","DOI":"10.1109\/ICECS.2002.1046433"},{"key":"10.1016\/j.ins.2021.07.066_b0030","series-title":"Proceedings of International Conference on Advanced Technologies for Communications","first-page":"549","article-title":"Temporal confusion network for speech-based soccer event retrieval","author":"Pham","year":"2013"},{"key":"10.1016\/j.ins.2021.07.066_b0035","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1109\/TCSVT.2013.2243640","article-title":"Event detection and summarization in soccer videos using Bayesian network and copula","volume":"24","author":"Tavassolipour","year":"2014","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.ins.2021.07.066_b0040","doi-asserted-by":"crossref","unstructured":"A. Ravent\u00f3s, R. Quijada, L. Torres, F. Tarr\u00e9s, E. Carasus\u00e1n, D. Giribet, The importance of audio descriptors in automatic soccer highlights generation, in: Proceedings of IEEE International Multi-Conference on Systems, Signals Devices, 2014, pp. 1\u20136. https:\/\/doi.org\/10.1109\/SSD.2014.6808845.","DOI":"10.1109\/SSD.2014.6808845"},{"key":"10.1016\/j.ins.2021.07.066_b0045","doi-asserted-by":"crossref","first-page":"796","DOI":"10.1109\/TIP.2003.812758","article-title":"Automatic soccer video analysis and summarization","volume":"12","author":"Ekin","year":"2003","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2021.07.066_b0050","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1016\/j.jvcir.2013.12.001","article-title":"A framework for video event classification by modeling temporal context of multimodal features using HMM","volume":"25","author":"Chen","year":"2014","journal-title":"J. Vis. Commun. Image Represent."},{"key":"10.1016\/j.ins.2021.07.066_b0055","series-title":"Proceedings of IEEE\/ACM International Symposium on Big Data Computing","first-page":"1","article-title":"Soccer video summarization using video content analysis and social media streams","author":"Jai-Andaloussi","year":"2014"},{"key":"10.1016\/j.ins.2021.07.066_b0060","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1109\/TPAMI.2013.137","article-title":"Video event detection: From subvolume localization to spatiotemporal path search","volume":"36","author":"Tran","year":"2014","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2021.07.066_b0065","series-title":"Proceedings of IEEE International Conference on Multimedia Big Data","first-page":"64","article-title":"Temporal multiple correspondence analysis for big data mining in soccer videos","author":"Yang","year":"2015"},{"key":"10.1016\/j.ins.2021.07.066_b0070","doi-asserted-by":"crossref","unstructured":"M. Sanabria, Sherly, F. Precioso, T. Menguy, A Deep architecture for multimodal summarization of soccer games, in: Proceedings of the 2Nd International Workshop on Multimedia Content Analysis in Sports, MMSports \u201919, ACM, New York, NY, USA, 2019, pp. 16\u201324. https:\/\/doi.org\/10.1145\/3347318.3355524.","DOI":"10.1145\/3347318.3355524"},{"key":"10.1016\/j.ins.2021.07.066_b0075","doi-asserted-by":"crossref","first-page":"351","DOI":"10.1016\/j.neucom.2019.01.008","article-title":"Action recognition and localization with spatial and temporal contexts","volume":"333","author":"Xu","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2021.07.066_b0080","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.neucom.2017.07.057","article-title":"Action recognition by latent duration model","volume":"273","author":"Wang","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2021.07.066_b0085","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.eswa.2017.01.008","article-title":"Realistic action recognition with salient foreground trajectories","volume":"75","author":"Yi","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2021.07.066_b0090","doi-asserted-by":"crossref","first-page":"364","DOI":"10.1016\/j.neucom.2015.03.124","article-title":"Cluster trees of improved trajectories for action recognition","volume":"173","author":"Chen","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2021.07.066_b0095","doi-asserted-by":"crossref","first-page":"8274","DOI":"10.1016\/j.eswa.2015.06.013","article-title":"Efficient large-scale action recognition in videos using extreme learning machines","volume":"42","author":"Varol","year":"2015","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2021.07.066_b0100","doi-asserted-by":"crossref","first-page":"446","DOI":"10.1016\/j.neucom.2019.05.058","article-title":"Spatial-temporal pyramid based convolutional neural network for action recognition","volume":"358","author":"Zheng","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2021.07.066_b0105","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/j.neucom.2018.06.071","article-title":"Action recognition using spatial-optical data organization and sequential learning framework","volume":"315","author":"Yuan","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2021.07.066_b0110","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1016\/j.eswa.2016.10.038","article-title":"Growing random forest on deep convolutional neural networks for scene categorization","volume":"71","author":"Bai","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2021.07.066_b0115","series-title":"Proceedings of IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)","first-page":"490","article-title":"Automatic soccer video event detection based on a deep neural network combined CNN and RNN","author":"Jiang","year":"2016"},{"key":"10.1016\/j.ins.2021.07.066_b0120","doi-asserted-by":"crossref","unstructured":"M. Z. Khan, S. Saleem, M. A. Hassan, M. Usman Ghanni Khan, Learning Deep C3D features for soccer video event detection, in: Proceedings of 14th International Conference on Emerging Technologies (ICET), 2018, pp. 1\u20136. https:\/\/doi.org\/10.1109\/ICET.2018.8603644.","DOI":"10.1109\/ICET.2018.8603644"},{"key":"10.1016\/j.ins.2021.07.066_b0125","doi-asserted-by":"crossref","first-page":"1147","DOI":"10.1109\/TMM.2018.2876046","article-title":"Automatic curation of sports highlights using multimodal excitement features","volume":"21","author":"Merler","year":"2018","journal-title":"IEEE Trans. Multimedia"},{"key":"10.1016\/j.ins.2021.07.066_b0130","doi-asserted-by":"crossref","unstructured":"T. Decroos, V. Dzyuba, J. V. Haaren, J. Davis, Predicting soccer highlights from spatio-temporal match event streams, in: Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017, pp. 1302\u20131308.","DOI":"10.1609\/aaai.v31i1.10754"},{"key":"10.1016\/j.ins.2021.07.066_b0135","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/j.neucom.2018.11.074","article-title":"An ensemble approach for supporting the respiratory isolation of presumed tuberculosis inpatients","volume":"331","author":"Alves","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2021.07.066_b0140","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.eswa.2016.06.011","article-title":"A survey on using domain and contextual knowledge for human activity recognition in video streams","volume":"63","author":"Onofri","year":"2016","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2021.07.066_b0145","doi-asserted-by":"crossref","first-page":"248","DOI":"10.4156\/jdcta.vol6.issue10.29","article-title":"A novel soccer video summarization model based on video time density function","volume":"6","author":"Wei","year":"2012","journal-title":"International Journal of Digital Content Technology and its Applications"},{"key":"10.1016\/j.ins.2021.07.066_b0150","series-title":"Machine Learning: A Bayesian and Optimization Perspective","author":"Theodoridis","year":"2015"},{"key":"10.1016\/j.ins.2021.07.066_b0155","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1007\/s10462-013-9405-z","article-title":"Extreme learning machine: Algorithm, theory and applications","volume":"44","author":"Ding","year":"2015","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.ins.2021.07.066_b0160","series-title":"Digital Signal Processing - System Analysis and Design","author":"Diniz","year":"2010"},{"key":"10.1016\/j.ins.2021.07.066_b0165","doi-asserted-by":"crossref","unstructured":"F. Coldefy, P. Bouthemy, Unsupervised soccer video abstraction based on pitch, dominant color and camera motion analysis, in: Proceedings of Annual ACM International Conference on Multimedia, New York, NY, USA, 2004, pp. 268\u2013271. https:\/\/doi.org\/10.1145\/1027527.1027588.","DOI":"10.1145\/1027527.1027588"},{"key":"10.1016\/j.ins.2021.07.066_b0170","article-title":"Introduction to Sound Processing","author":"Rocchesso","year":"2003","journal-title":"Universita di Verona"},{"key":"10.1016\/j.ins.2021.07.066_b0175","series-title":"Fundamentals of Digital Image Processing","author":"Jain","year":"1989"},{"key":"10.1016\/j.ins.2021.07.066_b0180","series-title":"Digital Image Processing","author":"Gonzalez","year":"2018"},{"key":"10.1016\/j.ins.2021.07.066_b0185","series-title":"The Pocket Handbook of Image Processing Algorithms in C","author":"Myler","year":"2009"},{"key":"10.1016\/j.ins.2021.07.066_b0190","unstructured":"A. Ekin, Sports Video Processing for Description, Summarization and Search, Ph.D. thesis, The University of Rochester, Eastman School of Music, 2004."},{"key":"10.1016\/j.ins.2021.07.066_b0195","series-title":"Television Sports Production","author":"Owens","year":"2015"},{"key":"10.1016\/j.ins.2021.07.066_b0200","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1186\/s40537-018-0151-6","article-title":"A survey on addressing high-class imbalance in big data","author":"Leevy","year":"2018","journal-title":"Journal of Big Data 5"},{"key":"10.1016\/j.ins.2021.07.066_b0205","unstructured":"MATHWORKS, Statistics and machine learning toolbox, https:\/\/www.mathworks.com\/products\/statistics.html, Accessed on 19\/06\/2017."},{"key":"10.1016\/j.ins.2021.07.066_b0210","unstructured":"A. Vezhnevets, GML adaboost matlab toolbox, http:\/\/research.graphicon.ru\/machine-learning\/gml-adaboost-matlab-toolbox.html, Accessed on 19\/06\/2017."},{"key":"10.1016\/j.ins.2021.07.066_b0215","unstructured":"Q. Zhu, G. Huang, Basic ELM algorithms, http:\/\/www.ntu.edu.sg\/home\/egbhuang\/elm_codes.html, Accessed on 19\/06\/2017."},{"key":"10.1016\/j.ins.2021.07.066_b0220","doi-asserted-by":"crossref","unstructured":"H. Liu, Highlight extraction in soccer videos by using multimodal analysis, in: Proceedings of International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, 2017, pp. 2169\u20132173. https:\/\/doi.org\/10.1109\/FSKD.2017.8393107.","DOI":"10.1109\/FSKD.2017.8393107"},{"key":"10.1016\/j.ins.2021.07.066_b0225","doi-asserted-by":"crossref","unstructured":"Z. Wang, J. Yu, Y. He, T. Guan, Affection arousal based highlight extraction for soccer video, Multimedia Tools and Applications 73 (2014) 519\u2013546. URL 10.1007\/s11042-013-1619-1. https:\/\/doi.org\/10.1007\/s11042-013-1619-1.","DOI":"10.1007\/s11042-013-1619-1"},{"key":"10.1016\/j.ins.2021.07.066_b0235","article-title":"Automatic analysis of broadcast football videos using contextual priors, Signal","volume":"11","author":"Sharma","year":"2016","journal-title":"Image and Video Processing"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521007568?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521007568?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,24]],"date-time":"2022-12-24T10:30:56Z","timestamp":1671877856000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025521007568"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11]]},"references-count":46,"alternative-id":["S0020025521007568"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2021.07.066","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2021,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multimodal soccer highlight identification using a sparse subset of frames integrating long-term sliding windows","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2021.07.066","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}