{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:40:12Z","timestamp":1740112812163,"version":"3.37.3"},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100006606","name":"Tianjin Municipal Natural Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100006606","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2021,10]]},"DOI":"10.1016\/j.ins.2021.07.021","type":"journal-article","created":{"date-parts":[[2021,7,6]],"date-time":"2021-07-06T14:51:18Z","timestamp":1625583078000},"page":"587-598","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":12,"special_numbering":"C","title":["Deep low-rank matrix factorization with latent correlation estimation for micro-video multi-label classification"],"prefix":"10.1016","volume":"575","author":[{"given":"Yuting","family":"Su","sequence":"first","affiliation":[]},{"given":"Junyu","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Daozheng","family":"Hong","sequence":"additional","affiliation":[]},{"given":"Fugui","family":"Fan","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Peiguang","family":"Jing","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2021.07.021_b0005","series-title":"Proceedings of ACM International Conference on Multimedia","first-page":"1415","article-title":"Shorter-is-better: Venue category estimation from micro-video","author":"Zhang","year":"2016"},{"key":"10.1016\/j.ins.2021.07.021_b0010","doi-asserted-by":"crossref","first-page":"77091","DOI":"10.1109\/ACCESS.2019.2922430","article-title":"Joint learning of nnextvlad, cnn and context gating for micro-video venue classification","volume":"7","author":"Liu","year":"2019","journal-title":"IEEE Access"},{"issue":"8","key":"10.1016\/j.ins.2021.07.021_b0015","doi-asserted-by":"crossref","first-page":"1519","DOI":"10.1109\/TKDE.2017.2785784","article-title":"Low-rank multi-view embedding learning for micro-video popularity prediction","volume":"30","author":"Jing","year":"2017","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.ins.2021.07.021_b0020","series-title":"Proceedings of ACM International Conference on Multimedia","first-page":"898","article-title":"Micro tells macro: Predicting the popularity of micro-videos via a transductive model","author":"Chen","year":"2016"},{"key":"10.1016\/j.ins.2021.07.021_b0025","series-title":"Proceedings of ACM International Conference on Multimedia","first-page":"1446","article-title":"Personalized hashtag recommendation for micro-videos","author":"Wei","year":"2019"},{"key":"10.1016\/j.ins.2021.07.021_b0030","series-title":"Proceedings of International Conference on Knowledge Science, Engineering and Management","first-page":"371","article-title":"Implicit rating methods based on interest preferences of categories for micro-video recommendation","author":"Chen","year":"2019"},{"key":"10.1016\/j.ins.2021.07.021_b0035","series-title":"Proceedings of ACM International Conference on Multimedia","first-page":"1192","article-title":"Enhancing micro-video understanding by harnessing external sounds","author":"Nie","year":"2017"},{"key":"10.1016\/j.ins.2021.07.021_b0040","series-title":"Proceedings of International World Wide Web Conference","first-page":"2542","article-title":"A multimodal variational encoder-decoder framework for micro-video popularity prediction","author":"Xie","year":"2020"},{"issue":"3","key":"10.1016\/j.ins.2021.07.021_b0045","doi-asserted-by":"crossref","first-page":"1235","DOI":"10.1109\/TIP.2018.2875363","article-title":"Online data organizer: micro-video categorization by structure-guided multimodal dictionary learning","volume":"28","author":"Liu","year":"2018","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.ins.2021.07.021_b0050","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIP.2019.2923608","article-title":"Neural multimodal cooperative learning toward micro-video understanding","volume":"29","author":"Wei","year":"2020","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.ins.2021.07.021_b0055","series-title":"Proceedings of ACM International Conference on Multimedia","first-page":"1146","article-title":"Temporal hierarchical attention at category-and item-level for micro-video click-through prediction","author":"Chen","year":"2018"},{"key":"10.1016\/j.ins.2021.07.021_b0060","doi-asserted-by":"crossref","first-page":"3020","DOI":"10.1145\/3308558.3313513","article-title":"User-video co-attention network for personalized micro-video recommendation","author":"Liu","year":"2019","journal-title":"Proceedings of International World Wide Web Conference"},{"issue":"1","key":"10.1016\/j.ins.2021.07.021_b0065","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1109\/TIP.2016.2624140","article-title":"Weakly supervised deep matrix factorization for social image understanding","volume":"26","author":"Li","year":"2016","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.ins.2021.07.021_b0070","series-title":"Proceedings of International Joint Conference on Artificial Intelligence","first-page":"3203","article-title":"Deep matrix factorization models for recommender systems","author":"Xue","year":"2017"},{"key":"10.1016\/j.ins.2021.07.021_b0075","series-title":"Proceedings of AAAI Conference on Artificial Intelligence","first-page":"2921","article-title":"Multi-view clustering via deep matrix factorization, in","author":"Zhao","year":"2017"},{"issue":"6755","key":"10.1016\/j.ins.2021.07.021_b0080","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1038\/44565","article-title":"Learning the parts of objects by non-negative matrix factorization","volume":"401","author":"Lee","year":"1999","journal-title":"Nature"},{"issue":"1","key":"10.1016\/j.ins.2021.07.021_b0085","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/TPAMI.2008.277","article-title":"Convex and semi-nonnegative matrix factorizations","volume":"32","author":"Ding","year":"2008","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"3","key":"10.1016\/j.ins.2021.07.021_b0090","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1109\/TPAMI.2016.2554555","article-title":"A deep matrix factorization method for learning attribute representations","volume":"39","author":"Trigeorgis","year":"2016","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"1","key":"10.1016\/j.ins.2021.07.021_b0095","first-page":"61","article-title":"A context integrated model for multi-label emotion detection","volume":"142","author":"Ahmed","year":"2018","journal-title":"Procedia Computer Science"},{"key":"10.1016\/j.ins.2021.07.021_b0100","doi-asserted-by":"crossref","unstructured":"N.O.-S.X. Oramas S, Barbieri F, Multimodal deep learning for music genre classification, Transactions of the International Society for Music Information Retrieval 1 (1) (2018) 4\u201321.","DOI":"10.5334\/tismir.10"},{"issue":"11","key":"10.1016\/j.ins.2021.07.021_b0105","doi-asserted-by":"crossref","first-page":"2837","DOI":"10.1109\/TMM.2019.2909860","article-title":"Adaptive hypergraph embedded semi-supervised multi-label image annotation","volume":"21","author":"Tang","year":"2019","journal-title":"IEEE Transactions on Multimedia"},{"issue":"9","key":"10.1016\/j.ins.2021.07.021_b0110","doi-asserted-by":"crossref","first-page":"1757","DOI":"10.1016\/j.patcog.2004.03.009","article-title":"Learning multi-label scene classification","volume":"37","author":"Boutell","year":"2004","journal-title":"Pattern Recognition"},{"issue":"2","key":"10.1016\/j.ins.2021.07.021_b0115","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1007\/s10994-008-5064-8","article-title":"Multilabel classification via calibrated label ranking","volume":"73","author":"F\u00fcrnkranz","year":"2008","journal-title":"Machine Learning"},{"key":"10.1016\/j.ins.2021.07.021_b0120","series-title":"Proceedings of ACM International Conference on Multimedia","first-page":"17","article-title":"Correlative multi-label video annotation","author":"Qi","year":"2007"},{"issue":"3","key":"10.1016\/j.ins.2021.07.021_b0125","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1007\/s10994-011-5256-5","article-title":"Classifier chains for multi-label classification","volume":"85","author":"Read","year":"2011","journal-title":"Machine Learning"},{"issue":"9","key":"10.1016\/j.ins.2021.07.021_b0130","doi-asserted-by":"crossref","first-page":"3682","DOI":"10.1109\/TNNLS.2019.2945869","article-title":"Mlne: Multi-label network embedding","volume":"31","author":"Shi","year":"2020","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"1","key":"10.1016\/j.ins.2021.07.021_b0135","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1109\/TPAMI.2012.88","article-title":"Robust recovery of subspace structures by low-rank representation","volume":"35","author":"Liu","year":"2012","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"3","key":"10.1016\/j.ins.2021.07.021_b0140","doi-asserted-by":"crossref","first-page":"645","DOI":"10.1109\/TNNLS.2016.2633275","article-title":"Self-taught low-rank coding for visual learning","volume":"29","author":"Li","year":"2018","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"2","key":"10.1016\/j.ins.2021.07.021_b0145","doi-asserted-by":"crossref","first-page":"850","DOI":"10.1109\/TIP.2015.2510498","article-title":"Discriminative transfer subspace learning via low-rank and sparse representation","volume":"25","author":"Xu","year":"2015","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.ins.2021.07.021_b0150","series-title":"Proceedings of International Conference on Machine Learning","first-page":"663","article-title":"Robust subspace segmentation by low-rank representation., in","author":"Liu","year":"2010"},{"issue":"2","key":"10.1016\/j.ins.2021.07.021_b0155","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1023\/A:1023052124951","article-title":"Contextual priming for object detection","volume":"53","author":"Torralba","year":"2003","journal-title":"International Journal of Computer Vision"},{"key":"10.1016\/j.ins.2021.07.021_b0160","series-title":"Proceedings of IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3214","article-title":"Dense semantic image segmentation with objects and attributes","author":"Zheng","year":"2014"},{"key":"10.1016\/j.ins.2021.07.021_b0165","unstructured":"S. Bengio, J. Dean, D. Erhan, E. Ie, Q. Le, A. Rabinovich, J. Shlens, Y. Singer, Using web co-occurrence statistics for improving image categorization, arXiv preprint arXiv:1312.5697 (2013)."},{"key":"10.1016\/j.ins.2021.07.021_b0170","series-title":"Proceedings of IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2529","article-title":"Video classification using semantic concept co-occurrences, in","author":"Modiri Assari","year":"2014"},{"issue":"2","key":"10.1016\/j.ins.2021.07.021_b0175","doi-asserted-by":"crossref","first-page":"352","DOI":"10.1109\/TPAMI.2017.2670560","article-title":"Exploiting feature and class relationships in video categorization with regularized deep neural networks","volume":"40","author":"Jiang","year":"2017","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"6","key":"10.1016\/j.ins.2021.07.021_b0180","doi-asserted-by":"crossref","first-page":"3080","DOI":"10.1109\/TIP.2012.2188038","article-title":"Fast semantic diffusion for large-scale context-based image and video annotation","volume":"21","author":"Jiang","year":"2012","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.ins.2021.07.021_b0185","series-title":"Proceedings of IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2441","article-title":"Costa: Co-occurrence statistics for zero-shot classification","author":"Mensink","year":"2014"},{"key":"10.1016\/j.ins.2021.07.021_b0190","series-title":"Proceedings of Conference on Uncertainty in Artificial Intelligence","first-page":"733","article-title":"A convex formulation for learning task relationships in multi-task learning, in","author":"Zhang","year":"2010"},{"issue":"4","key":"10.1016\/j.ins.2021.07.021_b0195","doi-asserted-by":"crossref","first-page":"1956","DOI":"10.1137\/080738970","article-title":"A singular value thresholding algorithm for matrix completion","volume":"20","author":"Cai","year":"2010","journal-title":"SIAM Journal on Optimization"},{"key":"10.1016\/j.ins.2021.07.021_b0200","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2818","article-title":"Rethinking the inception architecture for computer vision, in","author":"Szegedy","year":"2016"},{"issue":"7","key":"10.1016\/j.ins.2021.07.021_b0205","doi-asserted-by":"crossref","first-page":"2038","DOI":"10.1016\/j.patcog.2006.12.019","article-title":"Ml-knn: A lazy learning approach to multi-label learning","volume":"40","author":"Zhang","year":"2007","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.ins.2021.07.021_b0210","series-title":"Proceedings of IEEE International Conference on Computer Vision","first-page":"4489","article-title":"Learning spatiotemporal features with 3d convolutional networks","author":"Tran","year":"2015"},{"key":"10.1016\/j.ins.2021.07.021_b0215","series-title":"Proceedings of AAAI Conference on Artificial Intelligence","first-page":"2838","article-title":"Learning deep latent space for multi-label classification","author":"Yeh","year":"2017"},{"issue":"11","key":"10.1016\/j.ins.2021.07.021_b0220","doi-asserted-by":"crossref","first-page":"2160","DOI":"10.1109\/TNNLS.2015.2464090","article-title":"Learning robust and discriminative subspace with low-rank constraints","volume":"27","author":"Li","year":"2015","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.ins.2021.07.021_b0225","series-title":"Proceedings of IEEE International Conference on Computer Vision","first-page":"1615","article-title":"Latent low-rank representation for subspace segmentation and feature extraction","author":"Liu","year":"2011"},{"issue":"3","key":"10.1016\/j.ins.2021.07.021_b0230","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1961189.1961199","article-title":"Libsvm: A library for support vector machines","volume":"2","author":"Chang","year":"2011","journal-title":"ACM Transactions on Intelligent Systems and Technology"},{"key":"10.1016\/j.ins.2021.07.021_b0235","doi-asserted-by":"crossref","first-page":"3218","DOI":"10.1016\/j.ins.2009.06.010","article-title":"Feature selection for multi-label naive bayes classification","volume":"179","author":"Min-Ling Zhang","year":"2009","journal-title":"Information Sciences"},{"issue":"6","key":"10.1016\/j.ins.2021.07.021_b0240","doi-asserted-by":"crossref","first-page":"1081","DOI":"10.1109\/TKDE.2017.2785795","article-title":"Multi-label learning with global and local label correlation","volume":"30","author":"Zhu","year":"2018","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.ins.2021.07.021_b0245","series-title":"Proceedings of the European Conference on Artificial Intelligence","first-page":"261","article-title":"A scalable clustering-based local multi-label classification method","author":"Sun","year":"2016"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521007118?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521007118?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,24]],"date-time":"2022-12-24T15:29:05Z","timestamp":1671895745000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025521007118"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10]]},"references-count":49,"alternative-id":["S0020025521007118"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2021.07.021","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2021,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Deep low-rank matrix factorization with latent correlation estimation for micro-video multi-label classification","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2021.07.021","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}