{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,17]],"date-time":"2024-08-17T05:11:34Z","timestamp":1723871494872},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.ins.2021.04.089","type":"journal-article","created":{"date-parts":[[2021,5,4]],"date-time":"2021-05-04T01:04:03Z","timestamp":1620090243000},"page":"375-400","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["ROBP a robust border-peeling clustering using Cauchy kernel"],"prefix":"10.1016","volume":"571","author":[{"given":"Mingjing","family":"Du","sequence":"first","affiliation":[]},{"given":"Ru","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Ru","family":"Ji","sequence":"additional","affiliation":[]},{"given":"Xia","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yongquan","family":"Dong","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2021.04.089_b0005","doi-asserted-by":"crossref","unstructured":"M.A. Abbas, A.A. Shoukry, Cmune: A clustering using mutual nearest neighbors algorithm, in: Proceedings of the 11th International Conference on Information Science, Signal Processing and their Applications, 2012, pp. 1192-1197.","DOI":"10.1109\/ISSPA.2012.6310472"},{"key":"10.1016\/j.ins.2021.04.089_b0010","series-title":"Proceedings of the ACM International Conference on Management of Data","first-page":"49","article-title":"OPTICS: ordering points to identify the clustering structure, in","author":"Ankerst","year":"1999"},{"key":"10.1016\/j.ins.2021.04.089_b0015","doi-asserted-by":"crossref","first-page":"1791","DOI":"10.1109\/TPAMI.2019.2924953","article-title":"Border-peeling clustering","volume":"42","author":"Averbuch-Elor","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2021.04.089_b0020","article-title":"Density-based clustering, Wiley Interdisciplinary Reviews","volume":"10","author":"Campello","year":"2020","journal-title":"Data Min. Knowl. Disc."},{"key":"10.1016\/j.ins.2021.04.089_b0025","series-title":"Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining","first-page":"160","article-title":"Density-based clustering based on hierarchical density estimates, in","author":"Campello","year":"2013"},{"key":"10.1016\/j.ins.2021.04.089_b0030","doi-asserted-by":"crossref","first-page":"2777","DOI":"10.1007\/s00500-017-2748-7","article-title":"Automatic clustering based on density peak detection using generalized extreme value distribution","volume":"22","author":"Ding","year":"2018","journal-title":"Soft. Comput."},{"key":"10.1016\/j.ins.2021.04.089_b0035","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1016\/j.knosys.2017.07.027","article-title":"An entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neighborhood","volume":"133","author":"Ding","year":"2017","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2021.04.089_b0040","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.knosys.2016.02.001","article-title":"Study on density peaks clustering based on k-nearest neighbors and principal component analysis","volume":"99","author":"Du","year":"2016","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2021.04.089_b0045","series-title":"Proceedings of the 3rd SIAM International Conference on Data Mining","first-page":"47","article-title":"Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data, in","author":"Ert\u00f6z","year":"2003"},{"key":"10.1016\/j.ins.2021.04.089_b0050","series-title":"Proceedings of the 2nd ACM International Conference on Knowledge Discovery and Data Mining","first-page":"226","article-title":"A density-based algorithm for discovering clusters in large spatial databases with noise, in","author":"Ester","year":"1996"},{"key":"10.1016\/j.ins.2021.04.089_b0055","doi-asserted-by":"crossref","first-page":"5645","DOI":"10.1007\/s00500-018-3221-y","article-title":"Quasi-cluster centers clustering algorithm based on potential entropy and t-distributed stochastic neighbor embedding","volume":"23","author":"Fang","year":"2019","journal-title":"Soft. Comput."},{"key":"10.1016\/j.ins.2021.04.089_b0060","doi-asserted-by":"crossref","first-page":"553","DOI":"10.1080\/01621459.1983.10478008","article-title":"A method for comparing two hierarchical clusterings","volume":"78","author":"Fowlkes","year":"1983","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.ins.2021.04.089_b0065","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/j.ins.2018.01.013","article-title":"RECOME: A new density-based clustering algorithm using relative KNN kernel density","volume":"436","author":"Geng","year":"2018","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.04.089_b0070","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.ins.2019.09.006","article-title":"Semantic relation extraction using sequential and tree-structured LSTM with attention","volume":"509","author":"Geng","year":"2020","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.04.089_b0075","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1016\/j.ins.2019.01.026","article-title":"A model-free Bayesian classifier","volume":"482","author":"Geng","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.04.089_b0080","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1016\/j.neucom.2020.12.037","article-title":"Joint entity and relation extraction model based on rich semantics","volume":"429","author":"Geng","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2021.04.089_b0085","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2020.04.036","article-title":"An asymmetric knowledge representation learning in manifold space","volume":"531","author":"Han","year":"2020","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.04.089_b0090","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1049\/iet-ipr.2018.6622","article-title":"Level set based shape prior and deep learning for image segmentation","volume":"14","author":"Han","year":"2019","journal-title":"IET Image Proc."},{"key":"10.1016\/j.ins.2021.04.089_b0095","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1007\/s10994-016-5608-2","article-title":"QCC: a novel clustering algorithm based on Quasi-Cluster Centers","volume":"106","author":"Huang","year":"2017","journal-title":"Machine Learning"},{"key":"10.1016\/j.ins.2021.04.089_b0100","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/BF01908075","article-title":"Comparing partitions","volume":"2","author":"Hubert","year":"1985","journal-title":"J. Classif."},{"key":"10.1016\/j.ins.2021.04.089_b0105","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1093\/comjnl\/11.2.177","article-title":"The construction of hierarchic and non-hierarchic classifications","volume":"11","author":"Jardine","year":"1968","journal-title":"The Computer Journal"},{"key":"10.1016\/j.ins.2021.04.089_b0110","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1109\/2.781637","article-title":"Chameleon: Hierarchical clustering using dynamic modeling","volume":"32","author":"Karypis","year":"1999","journal-title":"Computer"},{"key":"10.1016\/j.ins.2021.04.089_b0115","doi-asserted-by":"crossref","first-page":"47468","DOI":"10.1109\/ACCESS.2020.2972034","article-title":"An Improved DBSCAN Algorithm Based on the Neighbor Similarity and Fast Nearest Neighbor Query","volume":"8","author":"Li","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.ins.2021.04.089_b0120","first-page":"1834","article-title":"Design and Implementation of an Improved DBSCAN Algorithm, in","author":"Lin","year":"2019","journal-title":"Proceedings of IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference"},{"key":"10.1016\/j.ins.2021.04.089_b0125","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.ins.2018.03.031","article-title":"Shared-nearest-neighbor-based clustering by fast search and find of density peaks","volume":"450","author":"Liu","year":"2018","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.04.089_b0130","doi-asserted-by":"crossref","first-page":"982","DOI":"10.1109\/TSMCB.2012.2220543","article-title":"Understanding and enhancement of internal clustering validation measures","volume":"43","author":"Liu","year":"2013","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2021.04.089_b0135","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2020.107449","article-title":"Density Peaks Clustering Based on Density Backbone and Fuzzy Neighborhood","volume":"107","author":"Lotfi","year":"2020","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.ins.2021.04.089_b0140","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.ins.2015.10.038","article-title":"Semi-supervised concept factorization for document clustering","volume":"331","author":"Lu","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.04.089_b0145","doi-asserted-by":"crossref","first-page":"873","DOI":"10.1016\/j.jmva.2006.11.013","article-title":"Comparing clusterings\u2014an information based distance","volume":"98","author":"Meil\u0103","year":"2007","journal-title":"Journal of Multivariate Analysis"},{"key":"10.1016\/j.ins.2021.04.089_b0150","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.engappai.2017.11.008","article-title":"Dual-graph regularized non-negative matrix factorization with sparse and orthogonal constraints","volume":"69","author":"Meng","year":"2018","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.ins.2021.04.089_b0155","doi-asserted-by":"crossref","unstructured":"F. Nie, C.-L. Wang, X. Li, K-multiple-means: A multiple-means clustering method with specified K clusters, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 959-967.","DOI":"10.1145\/3292500.3330846"},{"key":"10.1016\/j.ins.2021.04.089_b0160","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1109\/TCYB.2018.2868742","article-title":"Spectral clustering by joint spectral embedding and spectral rotation","volume":"50","author":"Pang","year":"2020","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2021.04.089_b0165","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.patcog.2017.09.008","article-title":"A Novel clustering method based on hybrid K-nearest-neighbor graph","volume":"74","author":"Qin","year":"2018","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.ins.2021.04.089_b0170","doi-asserted-by":"crossref","first-page":"15529","DOI":"10.1007\/s00500-020-04881-0","article-title":"A new hybridization of DBSCAN and fuzzy earthworm optimization algorithm for data cube clustering","volume":"24","author":"Rad","year":"2020","journal-title":"Soft. Comput."},{"key":"10.1016\/j.ins.2021.04.089_b0175","doi-asserted-by":"crossref","first-page":"846","DOI":"10.1080\/01621459.1971.10482356","article-title":"Objective criteria for the evaluation of clustering methods","volume":"66","author":"Rand","year":"1971","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.ins.2021.04.089_b0180","doi-asserted-by":"crossref","first-page":"1492","DOI":"10.1126\/science.1242072","article-title":"Clustering by fast search and find of density peaks","volume":"344","author":"Rodriguez","year":"2014","journal-title":"Science"},{"key":"10.1016\/j.ins.2021.04.089_b0185","doi-asserted-by":"crossref","first-page":"853","DOI":"10.1162\/089976699300016467","article-title":"A fast, compact approximation of the exponential function","volume":"11","author":"Schraudolph","year":"1999","journal-title":"Neural Comput."},{"key":"10.1016\/j.ins.2021.04.089_b0190","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/j.patcog.2019.03.026","article-title":"Local discriminative based sparse subspace learning for feature selection","volume":"92","author":"Shang","year":"2019","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.ins.2021.04.089_b0195","doi-asserted-by":"crossref","first-page":"793","DOI":"10.1109\/TCYB.2017.2657007","article-title":"Non-negative spectral learning and sparse regression-based dual-graph regularized feature selection","volume":"48","author":"Shang","year":"2017","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2021.04.089_b0200","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.patcog.2016.01.035","article-title":"Global discriminative-based nonnegative spectral clustering","volume":"55","author":"Shang","year":"2016","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.ins.2021.04.089_b0205","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1099\/00221287-17-1-201","article-title":"The application of computers to taxonomy","volume":"17","author":"Sneath","year":"1957","journal-title":"Microbiology"},{"key":"10.1016\/j.ins.2021.04.089_b0210","first-page":"2579","article-title":"Visualizing data using t-SNE","volume":"9","author":"van der Maaten","year":"2008","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.ins.2021.04.089_b0215","first-page":"2837","article-title":"Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance","volume":"11","author":"Vinh","year":"2010","journal-title":"The Journal of Machine Learning Research"},{"key":"10.1016\/j.ins.2021.04.089_b0220","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1504\/IJBIC.2018.093328","article-title":"Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems","volume":"12","author":"Wang","year":"2018","journal-title":"International Journal of Bio-Inspired Computation"},{"key":"10.1016\/j.ins.2021.04.089_b0225","doi-asserted-by":"crossref","first-page":"13465","DOI":"10.1007\/s00521-020-04754-5","article-title":"McDPC: multi-center density peak clustering","volume":"32","author":"Wang","year":"2020","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.ins.2021.04.089_b0230","doi-asserted-by":"crossref","first-page":"427","DOI":"10.2307\/2257960","article-title":"Multivariate methods in plant ecology: V. Similarity analyses and information-analysis, The","author":"Williams","year":"1966","journal-title":"J. Ecol."},{"key":"10.1016\/j.ins.2021.04.089_b0235","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.ins.2016.03.011","article-title":"Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors","volume":"354","author":"Xie","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.04.089_b0240","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.ins.2020.10.039","article-title":"Improved clustering algorithms for image segmentation based on non-local information and back projection","volume":"550","author":"Zhang","year":"2021","journal-title":"Inf. Sci."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521004308?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521004308?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,24]],"date-time":"2022-12-24T15:16:37Z","timestamp":1671894997000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025521004308"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":48,"alternative-id":["S0020025521004308"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2021.04.089","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"ROBP a robust border-peeling clustering using Cauchy kernel","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2021.04.089","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}