{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,4]],"date-time":"2024-09-04T09:45:32Z","timestamp":1725443132406},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100015800","name":"Jilin Province Development and Reform Commission","doi-asserted-by":"publisher","award":["2019C053-13"],"id":[{"id":"10.13039\/100015800","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100011789","name":"Department of Science and Technology of Jilin Province","doi-asserted-by":"publisher","award":["20190303135SF"],"id":[{"id":"10.13039\/501100011789","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.ins.2021.04.069","type":"journal-article","created":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T05:46:01Z","timestamp":1619243161000},"page":"87-103","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":26,"special_numbering":"C","title":["RGAM: A novel network architecture for 3D point cloud semantic segmentation in indoor scenes"],"prefix":"10.1016","volume":"571","author":[{"given":"Xue-Tao","family":"Chen","sequence":"first","affiliation":[]},{"given":"Ying","family":"Li","sequence":"additional","affiliation":[]},{"given":"Jia-Hao","family":"Fan","sequence":"additional","affiliation":[]},{"given":"Rui","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2021.04.069_b0005","first-page":"1534","article-title":"3d semantic parsing of large-scale indoor spaces","author":"Armeni","year":"2016","journal-title":"Proc. IEEE Conf. Computer Vision and Pattern Recognition"},{"issue":"4","key":"10.1016\/j.ins.2021.04.069_b0010","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs","volume":"40","author":"Chen","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2021.04.069_b0015","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.ins.2018.09.012","article-title":"Fast neighbor search by using revised kd tree","volume":"472","author":"Chen","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.04.069_b0020","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.ins.2020.02.009","article-title":"A future intelligent traffic system with mixed autonomous vehicles and human-driven vehicles","volume":"529","author":"Chen","year":"2020","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.04.069_b0025","unstructured":"C. Couprie, C. Farabet, L. Najman, Y. LeCun, Indoor semantic segmentation using depth information, arXiv preprint arXiv:1301.3572 (2013)."},{"key":"10.1016\/j.ins.2021.04.069_b0030","first-page":"5828","article-title":"Richly-annotated 3D reconstructions of indoor scenes","author":"Dai","year":"2017","journal-title":"Proc. IEEE Conf. Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.ins.2021.04.069_b0035","first-page":"647","article-title":"A deep convolutional activation feature for generic visual recognition","author":"Donahue","year":"2014","journal-title":"Int. Conf. Machine Learning"},{"key":"10.1016\/j.ins.2021.04.069_b0040","first-page":"580","article-title":"Rich feature hierarchies for accurate object detection and semantic segmentation","author":"Girshick","year":"2014","journal-title":"Proc. IEEE Conf. Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.ins.2021.04.069_b0045","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016","journal-title":"Proc. IEEE Conf. Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.ins.2021.04.069_b0050","first-page":"2631","article-title":"IEEE Int","volume":"2014","author":"Hermans","year":"2014","journal-title":"Conf. Robotics and Automation (ICRA)"},{"key":"10.1016\/j.ins.2021.04.069_b0055","first-page":"11108","article-title":"Efficient semantic segmentation of large-scale point clouds","author":"Hu","year":"2020","journal-title":"Proc. IEEE\/CVF Conf. Computer Vision and Pattern Recognition, CVPR"},{"key":"10.1016\/j.ins.2021.04.069_b0060","doi-asserted-by":"crossref","first-page":"129029","DOI":"10.1109\/ACCESS.2019.2939684","article-title":"A novel simplification method for 3D geometric point cloud based on the importance of point","volume":"7","author":"Ji","year":"2019","journal-title":"IEEE Access"},{"issue":"5","key":"10.1016\/j.ins.2021.04.069_b0065","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1109\/34.765655","article-title":"Using spin images for efficient object recognition in cluttered 3D scenes","volume":"21","author":"Johnson","year":"1999","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2021.04.069_b0070","first-page":"3779","article-title":"3D shape segmentation with projective convolutional networks","author":"Kalogerakis","year":"2017","journal-title":"Proc. IEEE Conf. Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.ins.2021.04.069_b0075","first-page":"863","article-title":"Escape from cells: Deep kd-networks for the recognition of 3D point cloud models","author":"Klokov","year":"2017","journal-title":"Proc. IEEE Int. Conf. Computer Vision"},{"key":"10.1016\/j.ins.2021.04.069_b0080","first-page":"9631","article-title":"Octree guided CNN with spherical kernels for 3D point clouds","author":"Lei","year":"2019","journal-title":"Proc. IEEE Conf. Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.ins.2021.04.069_b0085","first-page":"11611","article-title":"Efficient 3D point cloud segmentation with fuzzy spherical kernel","author":"Lei","year":"2020","journal-title":"Proc. IEEE\/CVF Conf. Computer Vision Pattern Recognition, CVPR"},{"key":"10.1016\/j.ins.2021.04.069_b0090","first-page":"307","article-title":"Fpnn: Field probing neural networks for 3D data","author":"Li","year":"2016","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.ins.2021.04.069_b0095","first-page":"9397","article-title":"Self-organizing network for point cloud analysis","author":"Li","year":"2018","journal-title":"Proc. IEEE Conf. Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.ins.2021.04.069_b0100","doi-asserted-by":"crossref","first-page":"984","DOI":"10.1016\/j.ins.2020.09.057","article-title":"Hierarchical multi-view context modelling for 3D object classification and retrieval","volume":"547","author":"Liu","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.04.069_b0105","first-page":"922","article-title":"IEEE\/RSJ Int. Conf. Intelligent Robots and Systems (IROS)","volume":"2015","author":"Maturana","year":"2015","journal-title":"IEEE"},{"issue":"6","key":"10.1016\/j.ins.2021.04.069_b0110","doi-asserted-by":"crossref","first-page":"S28","DOI":"10.1016\/j.isprsjprs.2011.08.006","article-title":"Recognizing basic structures from mobile laser scanning data for road inventory studies","volume":"66","author":"Pu","year":"2011","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.ins.2021.04.069_b0115","first-page":"652","article-title":"Deep learning on point sets for 3D classification and segmentation","author":"Qi","year":"2017","journal-title":"Proc. IEEE Conf. Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.ins.2021.04.069_b0120","first-page":"5099","article-title":"Pointnet++: Deep hierarchical feature learning on point sets in a metric space","author":"Qi","year":"2017","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.ins.2021.04.069_b0125","first-page":"3577","article-title":"Learning deep 3D representations at high resolutions","author":"Riegler","year":"2017","journal-title":"Proc. IEEE Conf. Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.ins.2021.04.069_b0130","series-title":"Principles of neurodynamics: perceptrons and the theory of brain mechanisms, Tech","author":"Rosenblatt","year":"1961"},{"key":"10.1016\/j.ins.2021.04.069_b0135","first-page":"4176","article-title":"A network architecture for point cloud classification via automatic depth images generation","author":"Roveri","year":"2018","journal-title":"Proc. IEEE Conf. Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.ins.2021.04.069_b0140","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.ins.2020.12.052","article-title":"Efficient convex optimization-based texture mapping for large-scale 3D scene reconstruction","volume":"556","author":"Sheng","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.04.069_b0145","series-title":"Indoor segmentation and support inference from rgbd images","first-page":"746","author":"Silberman","year":"2012"},{"key":"10.1016\/j.ins.2021.04.069_b0150","first-page":"2088","article-title":"Octree generating networks: Efficient convolutional architectures for high-resolution 3D outputs","author":"Tatarchenko","year":"2017","journal-title":"Proc. IEEE Conf. Computer Vision"},{"key":"10.1016\/j.ins.2021.04.069_b0155","doi-asserted-by":"crossref","unstructured":"M. Tatarchenko, J. Park, V. Koltun, Q.-Y. Zhou, Tangent convolutions for dense prediction in 3D, In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2018, pp. 3887\u20133896.","DOI":"10.1109\/CVPR.2018.00409"},{"key":"10.1016\/j.ins.2021.04.069_b0160","first-page":"537","article-title":"Int. Conf. 3D Vision (3DV)","volume":"2017","author":"Tchapmi","year":"2017","journal-title":"IEEE"},{"key":"10.1016\/j.ins.2021.04.069_b0165","first-page":"5998","article-title":"Attention is all you need","author":"Vaswani","year":"2017","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.ins.2021.04.069_b0170","series-title":"Multi-modal unsupervised feature learning for rgb-d scene labeling","first-page":"453","author":"Wang","year":"2014"},{"issue":"8","key":"10.1016\/j.ins.2021.04.069_b0175","doi-asserted-by":"crossref","first-page":"4594","DOI":"10.1109\/TGRS.2018.2829625","article-title":"A deep neural network with spatial pooling (DNNSP) for 3-D point cloud classification","volume":"56","author":"Wang","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"4","key":"10.1016\/j.ins.2021.04.069_b0180","doi-asserted-by":"crossref","first-page":"612","DOI":"10.3390\/rs10040612","article-title":"MSNet: Multi-scale convolutional network for point cloud classification","volume":"10","author":"Wang","year":"2018","journal-title":"Remote Sensing"},{"key":"10.1016\/j.ins.2021.04.069_b0185","first-page":"7794","article-title":"Non-local neural networks","author":"Wang","year":"2018","journal-title":"Proc. IEEE Conf. Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.ins.2021.04.069_b0190","first-page":"2569","article-title":"Similarity group proposal network for 3D point cloud instance segmentation","author":"Wang","year":"2018","journal-title":"Proc. IEEE Conf. Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.ins.2021.04.069_b0195","unstructured":"C. Wang, M. Pelillo, K. Siddiqi, Dominant set clustering and pooling for multi-view 3D object recognition, arXiv preprint arXiv:1906.01592 (2019)."},{"key":"10.1016\/j.ins.2021.04.069_b0200","doi-asserted-by":"crossref","unstructured":"Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein, J.M. Solomon, Dynamic graph CNN for learning on point clouds, ACM Transactions on Graphics (TOG) 38 (5) (2019) 146.","DOI":"10.1145\/3326362"},{"key":"10.1016\/j.ins.2021.04.069_b0205","doi-asserted-by":"crossref","first-page":"2919","DOI":"10.1109\/TVCG.2019.2896310","article-title":"VoxSegNet: volumetric CNNs for semantic part segmentation of 3D shapes","volume":"26","author":"Wang","year":"2019","journal-title":"IEEE Trans. Visual Comput. Graphics"},{"key":"10.1016\/j.ins.2021.04.069_b0210","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1117\/12.542536","volume":"Vol. 5426","author":"West","year":"2004","journal-title":"Context-driven automated target detection in 3D data, Automatic Target Recognition XIV"},{"issue":"1","key":"10.1016\/j.ins.2021.04.069_b0215","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1109\/LRA.2015.2506118","article-title":"Enhancing semantic segmentation for robotics: The power of 3-d entangled forests","volume":"1","author":"Wolf","year":"2015","journal-title":"IEEE Robot. Autom. Lett."},{"issue":"10","key":"10.1016\/j.ins.2021.04.069_b0220","doi-asserted-by":"crossref","first-page":"1379","DOI":"10.1016\/j.ins.2005.04.001","article-title":"Thinning algorithms based on quadtree and octree representations","volume":"176","author":"Wong","year":"2006","journal-title":"Inf. Sci."},{"issue":"19","key":"10.1016\/j.ins.2021.04.069_b0225","doi-asserted-by":"crossref","first-page":"6182","DOI":"10.1080\/01431161.2018.1455235","article-title":"Segmentation-based classification for 3D point clouds in the road environment","volume":"39","author":"Xiang","year":"2018","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.ins.2021.04.069_b0230","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/j.ins.2021.01.034","article-title":"Time-varying nonholonomic robot consensus formation using model predictive based protocol with switching topology","volume":"567","author":"Xiao","year":"2021","journal-title":"Inf. Sci."},{"issue":"12","key":"10.1016\/j.ins.2021.04.069_b0235","doi-asserted-by":"crossref","first-page":"7309","DOI":"10.1109\/TGRS.2016.2599163","article-title":"Discriminative-dictionary-learning-based multilevel point-cluster features for ALS point-cloud classification","volume":"54","author":"Zhang","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.ins.2021.04.069_b0240","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.ins.2021.02.052","article-title":"A turning point-based offline map matching algorithm for urban road networks","volume":"565","author":"Zhang","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.04.069_b0245","first-page":"5565","article-title":"Enhancing local neighborhood features for point cloud processing","author":"Zhao","year":"2019","journal-title":"Proc. IEEE Conf. Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.ins.2021.04.069_b0250","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.ins.2018.09.051","article-title":"3D shape classification and retrieval based on polar view","volume":"474","author":"Zhou","year":"2019","journal-title":"Inf. Sci."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521004047?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521004047?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,24]],"date-time":"2022-12-24T15:15:25Z","timestamp":1671894925000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025521004047"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":50,"alternative-id":["S0020025521004047"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2021.04.069","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"RGAM: A novel network architecture for 3D point cloud semantic segmentation in indoor scenes","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2021.04.069","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}