{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:45:31Z","timestamp":1743468331306,"version":"3.37.3"},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61802319","62002300"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2019M660245","2019M663552","2020T130547"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004543","name":"China Scholarship Council","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004543","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013804","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013804","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.ins.2021.04.053","type":"journal-article","created":{"date-parts":[[2021,4,20]],"date-time":"2021-04-20T13:14:57Z","timestamp":1618924497000},"page":"65-86","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":151,"special_numbering":"C","title":["RTFN: A robust temporal feature network for time series classification"],"prefix":"10.1016","volume":"571","author":[{"given":"Zhiwen","family":"Xiao","sequence":"first","affiliation":[]},{"given":"Xin","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Huanlai","family":"Xing","sequence":"additional","affiliation":[]},{"given":"Shouxi","family":"Luo","sequence":"additional","affiliation":[]},{"given":"Penglin","family":"Dai","sequence":"additional","affiliation":[]},{"given":"Dawei","family":"Zhan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2021.04.053_b0005","series-title":"Proc. ACM KDD\u201920","first-page":"23","article-title":"Usad: unsupervised anomaly detection on multivariate time series","author":"Audibert","year":"2020"},{"key":"10.1016\/j.ins.2021.04.053_b0010","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1007\/s10618-014-0349-y","article-title":"Learning a symbolic representation for multivariate time series classification","volume":"29","author":"Baydogan","year":"2015","journal-title":"Data Min. Knowl. Disc."},{"key":"10.1016\/j.ins.2021.04.053_b0015","doi-asserted-by":"crossref","first-page":"476","DOI":"10.1007\/s10618-015-0425-y","article-title":"Time series representation and similarity based on local autopatterns","volume":"30","author":"Baydogan","year":"2016","journal-title":"Data Min. Knowl. Disc."},{"issue":"11","key":"10.1016\/j.ins.2021.04.053_b0020","doi-asserted-by":"crossref","first-page":"2796","DOI":"10.1109\/TPAMI.2013.72","article-title":"A bag-of-features framework to classify time series","volume":"35","author":"Baydogan","year":"2013","journal-title":"IEEE Trans. Pattern Anal."},{"key":"10.1016\/j.ins.2021.04.053_b0025","series-title":"Proc. IEEE ICC 2020","first-page":"1","article-title":"Stdpg: a spatio-temporal deterministic policy gradient agent for dynamic routing in sdn","author":"Chen","year":"2020"},{"issue":"6","key":"10.1016\/j.ins.2021.04.053_b0030","doi-asserted-by":"crossref","first-page":"2674","DOI":"10.1109\/TCYB.2019.2894261","article-title":"Temporally identity-aware ssd with attentional lstm","volume":"50","author":"Chen","year":"2020","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2021.04.053_b0035","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/j.ins.2013.02.030","article-title":"A time series forest for classification and feature extraction","volume":"239","author":"Deng","year":"2013","journal-title":"Inform. Sci."},{"key":"10.1016\/j.ins.2021.04.053_b0040","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2020.02.069","article-title":"Tsi: Time series to imaging based model for detecting anomalous energy consumption in smart buildings","volume":"523","author":"Fahim","year":"2020","journal-title":"Inform. Sci."},{"key":"10.1016\/j.ins.2021.04.053_b0045","unstructured":"K. Fauvel, \u00c9. Fromont, V. Masson, P. Faverdin, and A. Termier. Local cascade ensemble for multivariate data classification. arXiv preprint arXiv:2005.03645, 2020."},{"key":"10.1016\/j.ins.2021.04.053_b0050","series-title":"Proc. IJCNN 2019","first-page":"1","article-title":"Adversarial attack on deep neural networks for time series classification","author":"Fawaz","year":"2019"},{"key":"10.1016\/j.ins.2021.04.053_b0055","doi-asserted-by":"crossref","first-page":"917","DOI":"10.1007\/s10618-019-00619-1","article-title":"Deep learning for time series classification: a review","volume":"33","author":"Fawaz","year":"2019","journal-title":"Data Min. Knowl. Disc."},{"key":"10.1016\/j.ins.2021.04.053_b0060","doi-asserted-by":"crossref","first-page":"1936","DOI":"10.1007\/s10618-020-00710-y","article-title":"Inceptiontime: finding alexnet for time series classification","volume":"34","author":"Fawaz","year":"2020","journal-title":"Data Min. Knowl. Disc."},{"key":"10.1016\/j.ins.2021.04.053_b0065","series-title":"Proc. NeurIPS 2019","first-page":"1","article-title":"Unsupervised scalable representation learning for multivariate time series","author":"Franceschi","year":"2019"},{"key":"10.1016\/j.ins.2021.04.053_b0070","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.ins.2019.09.006","article-title":"Semantic relation extraction using sequential and tree-structured lstm with attention","volume":"509","author":"Geng","year":"2020","journal-title":"Inform. Sci."},{"key":"10.1016\/j.ins.2021.04.053_b0075","series-title":"Proc. IJCAI 2017","first-page":"1753","article-title":"Improved deep embedded clustering with local structure preservation","author":"Guo","year":"2017"},{"key":"10.1016\/j.ins.2021.04.053_b0080","unstructured":"S.H. Huang, L. Xu, C. Jiang. Residual attention net for superior cross-domain time sequence modeling. arXiv preprint arXiv: 2001.04077, 2020."},{"key":"10.1016\/j.ins.2021.04.053_b0085","doi-asserted-by":"crossref","first-page":"1328","DOI":"10.1109\/ACCESS.2019.2916828","article-title":"Insights into lstm fully convolutional networks for time series classification","volume":"7","author":"Karim","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.ins.2021.04.053_b0090","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.neunet.2019.04.014","article-title":"Multivariate lstm-fcns for time series classification","volume":"116","author":"Karim","year":"2019","journal-title":"Neural Networks"},{"key":"10.1016\/j.ins.2021.04.053_b0095","doi-asserted-by":"crossref","first-page":"1053","DOI":"10.1007\/s10618-016-0473-y","article-title":"Generalized random shapelet forests","volume":"30","author":"Karlsson","year":"2016","journal-title":"Data Min. Knowl. Disc."},{"key":"10.1016\/j.ins.2021.04.053_b0100","series-title":"Proc. IJCNN 2019","first-page":"1","article-title":"Convtimenet: A pre-trained deep convolutional neural network for time series classification","author":"Kashiparekh","year":"2019"},{"key":"10.1016\/j.ins.2021.04.053_b0105","unstructured":"J. Large, A. Bagnall, S. Malinowski, R. Tavenard. From bop to boss and beyond: time series classification with dictionary based classifier. arXiv preprint arXiv:1809.06751, 2018."},{"key":"10.1016\/j.ins.2021.04.053_b0110","doi-asserted-by":"crossref","first-page":"1674","DOI":"10.1007\/s10618-019-00638-y","article-title":"A probabilistic classifier ensemble weighting scheme based on cross validated accuracy estimates","volume":"33","author":"Large","year":"2019","journal-title":"Data Min. Knowl. Disc."},{"key":"10.1016\/j.ins.2021.04.053_b0115","doi-asserted-by":"crossref","unstructured":"Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, pages 436\u2013444, 2015.","DOI":"10.1038\/nature14539"},{"key":"10.1016\/j.ins.2021.04.053_b0120","doi-asserted-by":"crossref","first-page":"565","DOI":"10.1007\/s10618-014-0361-2","article-title":"Time series classification with ensembles of elastic distance measures","volume":"29","author":"Lines","year":"2015","journal-title":"Data Min. Knowl. Disc."},{"issue":"5","key":"10.1016\/j.ins.2021.04.053_b0125","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3182382","article-title":"Time series classification with hive-cote: The hierarchical vote collective of transformation-based ensembles","volume":"12","author":"Lines","year":"2018","journal-title":"ACM Trans. Knowl. Discov. D."},{"key":"10.1016\/j.ins.2021.04.053_b0130","first-page":"1","article-title":"Anomaly detection in quasi-periodic time series based on automatic data segmentation and attentional lstm-cnn","author":"Liu","year":"2020","journal-title":"IEEE Trans. Knowl. Data En."},{"key":"10.1016\/j.ins.2021.04.053_b0135","series-title":"Proc. NeurIPS 2019","first-page":"1","article-title":"Learning representations for time series clustering","author":"Ma","year":"2019"},{"key":"10.1016\/j.ins.2021.04.053_b0140","series-title":"Proc. AAAI 2020","first-page":"5069","article-title":"Adversarial dynamic shapelet networks","author":"Ma","year":"2020"},{"key":"10.1016\/j.ins.2021.04.053_b0145","series-title":"Proc. ICML 2011","first-page":"217","article-title":"Learning discriminative fisher kernels","author":"Maaten","year":"2011"},{"key":"10.1016\/j.ins.2021.04.053_b0150","series-title":"Proc. ICLR 2018","first-page":"1","article-title":"Deep temporal clustering: fully unsupervised learning of time-domain features","author":"Madiraju","year":"2018"},{"key":"10.1016\/j.ins.2021.04.053_b0155","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1016\/j.ins.2020.12.024","article-title":"Claver: An integrated framework of convolutional layer, bidirectional lstm with attention mechanism based scholarly venue recommendation","volume":"559","author":"Pradhan","year":"2020","journal-title":"Inform. Sci."},{"key":"10.1016\/j.ins.2021.04.053_b0160","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1007\/s10618-020-00727-3","article-title":"The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances","volume":"35","author":"Puiz","year":"2021","journal-title":"Data Min. Knowl. Disc."},{"issue":"10","key":"10.1016\/j.ins.2021.04.053_b0165","doi-asserted-by":"crossref","first-page":"1848","DOI":"10.1109\/TPAMI.2007.1124","article-title":"Hidden conditional random fields","volume":"29","author":"Quattoni","year":"2007","journal-title":"IEEE Trans. Pattern Anal."},{"key":"10.1016\/j.ins.2021.04.053_b0170","unstructured":"P. Rajpurkar, A.Y. Hannun, M. Haghpanahi, C. Bourn, and A.Y. Ng. Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv:1707.01836, 2017."},{"key":"10.1016\/j.ins.2021.04.053_b0175","unstructured":"J. Redmon, A. Farhadi. Yolov3: An incremental improvement. arXiv preprint arXiv: 1804.02767, 2018."},{"key":"10.1016\/j.ins.2021.04.053_b0180","unstructured":"S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv: 1609.04747v2, 2017."},{"key":"10.1016\/j.ins.2021.04.053_b0185","doi-asserted-by":"crossref","unstructured":"P. Sch\u00e4fer and U. Leser. Multivariate time series classification with weasel+muse. arXiv preprint arXiv:1711.11343, 2017.","DOI":"10.1145\/3132847.3132980"},{"key":"10.1016\/j.ins.2021.04.053_b0190","series-title":"Proc. CCIA 2018","first-page":"120","article-title":"Towards a universal neural network encoder for time series","author":"Serr\u00e1","year":"2018"},{"key":"10.1016\/j.ins.2021.04.053_b0195","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10618-016-0455-0","article-title":"Generalizing dtw to the multi-dimensional case requires an adaptive approach","volume":"31","author":"Shokoohi-Yekta","year":"2017","journal-title":"Data Min. Knowl. Disc."},{"key":"10.1016\/j.ins.2021.04.053_b0200","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.inffus.2019.06.009","article-title":"Convolution-deconvolution word embedding: an end-to-end multi-prototype fusion embedding method for natural language processing","volume":"53","author":"Shuang","year":"2020","journal-title":"Inform. Fusion"},{"key":"10.1016\/j.ins.2021.04.053_b0205","unstructured":"W. Tang, G. Long, L. Liu, T. Zhou, J. Jiang, and M. Blumenstein. Rethinking 1d-cnn for time series classification: a stronger baseline. arXiv preprint arXiv: 2002.10061, 2020."},{"key":"10.1016\/j.ins.2021.04.053_b0210","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1016\/j.patcog.2017.08.016","article-title":"Autoregressive forests for multivariate time series modeling","volume":"73","author":"Tuncel","year":"2018","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.ins.2021.04.053_b0215","series-title":"Proc. NeurIPS 2017","first-page":"5998","article-title":"Attention is all you need","author":"Vaswani","year":"2017"},{"key":"10.1016\/j.ins.2021.04.053_b0220","series-title":"Proc. IEEE IJCNN 2017","first-page":"1578","article-title":"Time series classification from scratch with deep neural networks: A strong baseline","author":"Wang","year":"2017"},{"key":"10.1016\/j.ins.2021.04.053_b0225","unstructured":"M. Wistuba, J. Grabocka, L. Schmidt-Thieme. Ultra-fast shapelets for time series classification. arXiv preprint arXiv:1503.05018, 2015."},{"key":"10.1016\/j.ins.2021.04.053_b0230","series-title":"Proc. ICML 2016","first-page":"478","article-title":"Unsupervised deep embedding for clustering analysis","author":"Xie","year":"2016"},{"key":"10.1016\/j.ins.2021.04.053_b0235","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1016\/j.ins.2020.07.045","article-title":"Mirco-earthquake source depth detection using machine learning techniques","volume":"544","author":"Yang","year":"2021","journal-title":"Inform. Sci."},{"key":"10.1016\/j.ins.2021.04.053_b0240","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.inffus.2019.06.024","article-title":"Multi-class arrhythmia detection from l2-lead varied-length ecg using attention-based time-incremental convolutional neural network","volume":"53","author":"Yao","year":"2020","journal-title":"Inform. Fusion"},{"key":"10.1016\/j.ins.2021.04.053_b0245","series-title":"Proc. AAAI 2020","first-page":"6845","article-title":"Tapnet: Multivariate time series classification with attentional prototypical network","author":"Zhang","year":"2020"},{"issue":"1","key":"10.1016\/j.ins.2021.04.053_b0250","first-page":"1170","article-title":"Attention couplenet: fully convolutional attention coupling network for object detection","volume":"28","author":"Zhu","year":"2018","journal-title":"IEEE Trans. Image Process."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521003820?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521003820?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,24]],"date-time":"2022-12-24T15:14:25Z","timestamp":1671894865000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025521003820"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":50,"alternative-id":["S0020025521003820"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2021.04.053","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"RTFN: A robust temporal feature network for time series classification","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2021.04.053","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}