{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:40:01Z","timestamp":1740112801443,"version":"3.37.3"},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003453","name":"Guangdong Provincial Natural Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003453","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002920","name":"University Grants Committee Research Grants Council","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002920","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.ins.2021.03.055","type":"journal-article","created":{"date-parts":[[2021,4,6]],"date-time":"2021-04-06T05:51:30Z","timestamp":1617688290000},"page":"358-374","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":35,"special_numbering":"C","title":["An adaptive fuzzy penalty method for constrained evolutionary optimization"],"prefix":"10.1016","volume":"571","author":[{"given":"Bing-Chuan","family":"Wang","sequence":"first","affiliation":[]},{"given":"Han-Xiong","family":"Li","sequence":"additional","affiliation":[]},{"given":"Yun","family":"Feng","sequence":"additional","affiliation":[]},{"given":"Wen-Jing","family":"Shen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.ins.2021.03.055_b0005","doi-asserted-by":"crossref","first-page":"1001","DOI":"10.1007\/s10845-010-0393-4","article-title":"Artificial bee colony algorithm for large-scale problems and engineering design optimization","volume":"23","author":"Akay","year":"2012","journal-title":"Journal of Intelligent Manufacturing"},{"issue":"3","key":"10.1016\/j.ins.2021.03.055_b0010","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1007\/s00500-008-0323-y","article-title":"KEEL: a software tool to assess evolutionary algorithms for data mining problems","volume":"13","author":"Alcal\u00e1-Fdez","year":"2009","journal-title":"Soft Computing"},{"year":"2018","series-title":"Evolutionary Computation 1: Basic Algorithms and Operators","author":"B\u00e4ck","key":"10.1016\/j.ins.2021.03.055_b0015"},{"key":"10.1016\/j.ins.2021.03.055_b0020","series-title":"Evolutionary Constrained Optimization","first-page":"1","article-title":"A Critical Review of Adaptive Penalty Techniques in Evolutionary Computation","author":"Barbosa","year":"2015"},{"issue":"11\u201312","key":"10.1016\/j.ins.2021.03.055_b0025","doi-asserted-by":"crossref","first-page":"1245","DOI":"10.1016\/S0045-7825(01)00323-1","article-title":"Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art","volume":"191","author":"Coello","year":"2002","journal-title":"Computer Methods in Applied Mechanics and Engineering"},{"issue":"4","key":"10.1016\/j.ins.2021.03.055_b0030","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1080\/02630250008970288","article-title":"Constraint-handling using an evolutionary multiobjective optimization technique","volume":"17","author":"Coello Coello","year":"2000","journal-title":"Civil Engineering Systems"},{"key":"10.1016\/j.ins.2021.03.055_b0035","series-title":"Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, ACM","first-page":"563","article-title":"Constraint-handling techniques used with evolutionary algorithms","author":"Coello Coello","year":"2016"},{"key":"10.1016\/j.ins.2021.03.055_b0040","doi-asserted-by":"crossref","unstructured":"M. \u010crepin\u0161ek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: A survey, ACM Computing Surveys (CSUR) 45 (3) (2013) 35:1\u201335:33.","DOI":"10.1145\/2480741.2480752"},{"key":"10.1016\/j.ins.2021.03.055_b0045","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.swevo.2016.01.004","article-title":"Recent advances in differential evolution\u2013an updated survey","volume":"27","author":"Das","year":"2016","journal-title":"Swarm and Evolutionary Computation"},{"issue":"1","key":"10.1016\/j.ins.2021.03.055_b0050","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1109\/TEVC.2010.2059031","article-title":"Differential evolution: A survey of the state-of-the-art","volume":"15","author":"Das","year":"2010","journal-title":"IEEE Transactions on Evolutionary Computation"},{"issue":"1","key":"10.1016\/j.ins.2021.03.055_b0055","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1504\/IJAISC.2014.059280","article-title":"Analysing mutation schemes for real-parameter genetic algorithms","volume":"4","author":"Deb","year":"2014","journal-title":"International Journal of Artificial Intelligence and Soft Computing"},{"issue":"1","key":"10.1016\/j.ins.2021.03.055_b0060","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.swevo.2011.02.002","article-title":"A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms","volume":"1","author":"Derrac","year":"2011","journal-title":"Swarm and Evolutionary Computation"},{"key":"10.1016\/j.ins.2021.03.055_b0065","doi-asserted-by":"crossref","unstructured":"J. Dombi, E. T\u00f3th-Laufer, Reducing the computational requirements in the mamdani-type fuzzy control, Acta Polytechnica Hungarica 17 (3).","DOI":"10.12700\/APH.17.3.2020.3.2"},{"issue":"19","key":"10.1016\/j.ins.2021.03.055_b0070","doi-asserted-by":"crossref","first-page":"5759","DOI":"10.1016\/j.apm.2014.12.019","article-title":"Solving nonlinear constrained optimization problems: An immune evolutionary based two-phase approach","volume":"39","author":"Hsieh","year":"2015","journal-title":"Applied Mathematical Modelling"},{"issue":"2","key":"10.1016\/j.ins.2021.03.055_b0075","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/S0165-0114(97)00409-0","article-title":"Computational complexity of general fuzzy logic control and its simplification for a loop controller","volume":"111","author":"Kim","year":"2000","journal-title":"Fuzzy Sets and Systems"},{"volume":"vol. 27","year":"2004","author":"Lee","key":"10.1016\/j.ins.2021.03.055_b0080"},{"issue":"3","key":"10.1016\/j.ins.2021.03.055_b0085","doi-asserted-by":"crossref","first-page":"505","DOI":"10.1109\/21.364863","article-title":"A new methodology for designing a fuzzy logic controller","volume":"25","author":"Li","year":"1995","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics"},{"issue":"5","key":"10.1016\/j.ins.2021.03.055_b0090","doi-asserted-by":"crossref","first-page":"791","DOI":"10.1109\/3477.537321","article-title":"Conventional fuzzy control and its enhancement","volume":"26","author":"Li","year":"1996","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)"},{"issue":"2","key":"10.1016\/j.ins.2021.03.055_b0095","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1007\/s10589-014-9676-6","article-title":"Minimum penalty for constrained evolutionary optimization","volume":"60","author":"Li","year":"2015","journal-title":"Computational Optimization and Applications"},{"key":"10.1016\/j.ins.2021.03.055_b0100","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.eswa.2018.10.035","article-title":"FSB-EA: Fuzzy search bias guided constraint handling technique for evolutionary algorithm","volume":"119","author":"Li","year":"2019","journal-title":"Expert Systems with Applications"},{"issue":"8","key":"10.1016\/j.ins.2021.03.055_b0105","first-page":"8","article-title":"Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization","volume":"41","author":"Liang","year":"2006","journal-title":"Journal of Applied Mechanics"},{"issue":"4","key":"10.1016\/j.ins.2021.03.055_b0110","doi-asserted-by":"crossref","first-page":"1305","DOI":"10.1007\/s00500-015-1588-6","article-title":"An exact penalty function-based differential search algorithm for constrained global optimization","volume":"20","author":"Liu","year":"2016","journal-title":"Soft Computing"},{"issue":"4","key":"10.1016\/j.ins.2021.03.055_b0115","doi-asserted-by":"crossref","first-page":"561","DOI":"10.1109\/TEVC.2009.2033582","article-title":"Ensemble of constraint handling techniques","volume":"14","author":"Mallipeddi","year":"2010","journal-title":"IEEE Transactions on Evolutionary Computation"},{"key":"10.1016\/j.ins.2021.03.055_b0120","series-title":"Problem definitions and evaluation criteria for the CEC, competition on constrained real-parameter optimization","first-page":"24","author":"Mallipeddi","year":"2010"},{"issue":"19","key":"10.1016\/j.ins.2021.03.055_b0125","doi-asserted-by":"crossref","first-page":"6777","DOI":"10.1016\/j.eswa.2015.04.070","article-title":"Adaptive penalty and barrier function based on fuzzy logic","volume":"42","author":"Matias","year":"2015","journal-title":"Expert Systems with Applications"},{"issue":"4","key":"10.1016\/j.ins.2021.03.055_b0130","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.swevo.2011.10.001","article-title":"Constraint-handling in nature-inspired numerical optimization: past, present and future","volume":"1","author":"Mezura-Montes","year":"2011","journal-title":"Swarm and Evolutionary Computation"},{"year":"2013","series-title":"Genetic Algorithms+ Data Structures= Evolution Programs","author":"Michalewicz","key":"10.1016\/j.ins.2021.03.055_b0135"},{"issue":"1\u20132","key":"10.1016\/j.ins.2021.03.055_b0140","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1007\/s10462-009-9137-2","article-title":"Recent advances in differential evolution: a survey and experimental analysis","volume":"33","author":"Neri","year":"2010","journal-title":"Artificial Intelligence Review"},{"issue":"12","key":"10.1016\/j.ins.2021.03.055_b0145","doi-asserted-by":"crossref","first-page":"3919","DOI":"10.1007\/s00500-017-2603-x","article-title":"A novel constraint-handling technique based on dynamic weights for constrained optimization problems","volume":"22","author":"Peng","year":"2018","journal-title":"Soft Computing"},{"key":"10.1016\/j.ins.2021.03.055_b0150","series-title":"2017 IEEE Congress on Evolutionary Computation (CEC)","first-page":"1683","article-title":"L-SHADE with competing strategies applied to constrained optimization","author":"Pol\u00e1kov\u00e1","year":"2017"},{"issue":"3","key":"10.1016\/j.ins.2021.03.055_b0155","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/j.cad.2010.12.015","article-title":"Teaching\u2013learning-based optimization: a novel method for constrained mechanical design optimization problems","volume":"43","author":"Rao","year":"2011","journal-title":"Computer-Aided Design"},{"year":"2009","series-title":"Engineering Optimization: Theory and Practice","author":"Rao","key":"10.1016\/j.ins.2021.03.055_b0160"},{"issue":"5","key":"10.1016\/j.ins.2021.03.055_b0165","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/0895-7177(96)00014-3","article-title":"Genetic algorithms in constrained optimization","volume":"23","author":"Reid","year":"1996","journal-title":"Mathematical and Computer Modelling"},{"issue":"12","key":"10.1016\/j.ins.2021.03.055_b0170","doi-asserted-by":"crossref","first-page":"2953","DOI":"10.1109\/TCYB.2014.2359985","article-title":"A fuzzy rule-based penalty function approach for constrained evolutionary optimization","volume":"46","author":"Saha","year":"2016","journal-title":"IEEE Transactions on Cybernetics"},{"key":"10.1016\/j.ins.2021.03.055_b0175","doi-asserted-by":"crossref","unstructured":"T. Takahama, S. Sakai, Constrained optimization by the \u03b5)constrained differential evolution with an archive and gradient-based mutation, in: IEEE Congress on Evolutionary Computation, IEEE, 2010, pp. 1\u20139.","DOI":"10.1109\/CEC.2010.5586484"},{"key":"10.1016\/j.ins.2021.03.055_b0180","series-title":"2017 IEEE Congress on Evolutionary Computation (CEC)","first-page":"1231","article-title":"A unified differential evolution algorithm for constrained optimization problems","author":"Trivedi","year":"2017"},{"key":"10.1016\/j.ins.2021.03.055_b0185","series-title":"2008 IEEE International Conference on Systems, Man and Cybernetics","first-page":"1426","article-title":"Improved evolutionary algorithms for solving constrained optimization problems with tiny feasible space","author":"Ullah","year":"2008"},{"issue":"6","key":"10.1016\/j.ins.2021.03.055_b0190","doi-asserted-by":"crossref","first-page":"1167","DOI":"10.1109\/TFUZZ.2020.2968833","article-title":"Water cycle algorithm tuned fuzzy expert system for trusted routing in smart grid communication network","volume":"28","author":"Velusamy","year":"2020","journal-title":"IEEE Transactions on Fuzzy Systems"},{"key":"10.1016\/j.ins.2021.03.055_b0195","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.ins.2019.07.076","article-title":"Individual-dependent feasibility rule for constrained differential evolution","volume":"506","author":"Wang","year":"2020","journal-title":"Information Sciences"},{"key":"10.1016\/j.ins.2021.03.055_b0200","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.ins.2018.04.083","article-title":"An improved teaching-learning-based optimization for constrained evolutionary optimization","volume":"456","author":"Wang","year":"2018","journal-title":"Information Sciences"},{"key":"10.1016\/j.ins.2021.03.055_b0205","unstructured":"B.-C. Wang, H.-X. Li, J.-P. Li, Y. Wang, Composite differential evolution for constrained evolutionary optimization, IEEE Transactions on Systems, Man, and Cybernetics: Systems (99) (2018b) 1\u201314."},{"key":"10.1016\/j.ins.2021.03.055_b0210","unstructured":"L.-X. Wang, A course in fuzzy systems and control, Prentice-Hall Inc, 1996."},{"issue":"1","key":"10.1016\/j.ins.2021.03.055_b0215","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1109\/TEVC.2007.902851","article-title":"An adaptive tradeoff model for constrained evolutionary optimization","volume":"12","author":"Wang","year":"2008","journal-title":"IEEE Transactions on Evolutionary Computation"},{"issue":"12","key":"10.1016\/j.ins.2021.03.055_b0220","doi-asserted-by":"crossref","first-page":"2938","DOI":"10.1109\/TCYB.2015.2493239","article-title":"Incorporating objective function information into the feasibility rule for constrained evolutionary optimization","volume":"46","author":"Wang","year":"2016","journal-title":"IEEE Transactions on Cybernetics"},{"key":"10.1016\/j.ins.2021.03.055_b0225","series-title":"Proceedings of the 8th International Conference on Neural Information Processing","first-page":"299","article-title":"Fuzzy penalty function approach for constrained function optimization with evolutionary algorithms","author":"Wu","year":"2001"},{"key":"10.1016\/j.ins.2021.03.055_b0230","unstructured":"G. Wu, R. Mallipeddi, P. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization, National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report."},{"key":"10.1016\/j.ins.2021.03.055_b0235","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1016\/j.ins.2018.01.014","article-title":"Differential evolution with adaptive trial vector generation strategy and cluster-replacement-based feasibility rule for constrained optimization","volume":"435","author":"Xu","year":"2018","journal-title":"Information Sciences"},{"key":"10.1016\/j.ins.2021.03.055_b0240","unstructured":"F. Xue, A. Sanderson, P. Bonissone, R.J. Graves, Fuzzy Logic Controlled Multi-Objective Differential Evolution, in: The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ \u201905, 720\u2013725, 2005."},{"issue":"2","key":"10.1016\/j.ins.2021.03.055_b0245","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1109\/TCYB.2013.2250956","article-title":"Constrained optimization via artificial immune system","volume":"44","author":"Zhang","year":"2014","journal-title":"IEEE Transactions on Cybernetics"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521003066?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521003066?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,24]],"date-time":"2022-12-24T15:10:13Z","timestamp":1671894613000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025521003066"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":49,"alternative-id":["S0020025521003066"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2021.03.055","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An adaptive fuzzy penalty method for constrained evolutionary optimization","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2021.03.055","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}