{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T11:11:34Z","timestamp":1726485094033},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2021,7]]},"DOI":"10.1016\/j.ins.2021.01.083","type":"journal-article","created":{"date-parts":[[2021,2,10]],"date-time":"2021-02-10T03:19:53Z","timestamp":1612927193000},"page":"136-154","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Two-step hybrid collaborative filtering using deep variational Bayesian autoencoders"],"prefix":"10.1016","volume":"562","author":[{"given":"Ravi","family":"Nahta","sequence":"first","affiliation":[]},{"given":"Yogesh Kumar","family":"Meena","sequence":"additional","affiliation":[]},{"given":"Dinesh","family":"Gopalani","sequence":"additional","affiliation":[]},{"given":"Ganpat Singh","family":"Chauhan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2021.01.083_b0005","series-title":"Proceedings of the 10th ACM Conference on Recommender Systems","first-page":"107","article-title":"Ask the gru: multi-task learning for deep text recommendations","author":"Bansal","year":"2016"},{"key":"10.1016\/j.ins.2021.01.083_b0010","doi-asserted-by":"crossref","unstructured":"O. Barkan. Bayesian neural word embedding. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.","DOI":"10.1609\/aaai.v31i1.10987"},{"key":"10.1016\/j.ins.2021.01.083_b0015","series-title":"Proceedings of the 26th International Conference on World Wide Web","first-page":"1341","article-title":"A generic coordinate descent framework for learning from implicit feedback","author":"Bayer","year":"2017"},{"issue":"518","key":"10.1016\/j.ins.2021.01.083_b0020","doi-asserted-by":"crossref","first-page":"859","DOI":"10.1080\/01621459.2017.1285773","article-title":"Variational inference: a review for statisticians","volume":"112","author":"Blei","year":"2017","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.ins.2021.01.083_b0025","doi-asserted-by":"crossref","unstructured":"S.R. Bowman, L. Vilnis, O. Vinyals, A.M. Dai, R. Jozefowicz, S. Bengio, Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.","DOI":"10.18653\/v1\/K16-1002"},{"key":"10.1016\/j.ins.2021.01.083_b0030","series-title":"Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems","first-page":"38","article-title":"Recurrent latent variable networks for session-based recommendation","author":"Chatzis","year":"2017"},{"key":"10.1016\/j.ins.2021.01.083_b0035","doi-asserted-by":"crossref","unstructured":"G.S. Chauhan, Y. K. Meena, D. Gopalani, R. Nahta, A two-step hybrid unsupervised model with attention mechanism for aspect extraction. Expert Systems with Applications, page 113673, 2020.","DOI":"10.1016\/j.eswa.2020.113673"},{"key":"10.1016\/j.ins.2021.01.083_b0040","doi-asserted-by":"crossref","first-page":"1279","DOI":"10.1016\/j.ins.2019.10.038","article-title":"Recommendation system exploiting aspect-based opinion mining with deep learning method","volume":"512","author":"Da\u2019u","year":"2020","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.01.083_b0045","series-title":"Thirty-first AAAI conference on artificial intelligence","article-title":"A hybrid collaborative filtering model with deep structure for recommender systems","author":"Dong","year":"2017"},{"key":"10.1016\/j.ins.2021.01.083_b0050","unstructured":"G.K. Dziugaite, D.M. Roy, Neural network matrix factorization. arXiv preprint arXiv:1511.06443, 2015."},{"key":"10.1016\/j.ins.2021.01.083_b0055","series-title":"Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics","first-page":"201","article-title":"Why does unsupervised pre-training help deep learning?","author":"Erhan","year":"2010"},{"key":"10.1016\/j.ins.2021.01.083_b0060","doi-asserted-by":"crossref","unstructured":"H. Guo, R. Tang, Y. Ye, Z. Li, X. He, Deepfm: a factorization-machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.","DOI":"10.24963\/ijcai.2017\/239"},{"issue":"4","key":"10.1016\/j.ins.2021.01.083_b0065","first-page":"1","article-title":"The movielens datasets: history and context","volume":"5","author":"Harper","year":"2015","journal-title":"Acm Trans. Interactive Intell. Syst. (tiis)"},{"key":"10.1016\/j.ins.2021.01.083_b0070","series-title":"Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval","first-page":"355","article-title":"Neural factorization machines for sparse predictive analytics","author":"He","year":"2017"},{"key":"10.1016\/j.ins.2021.01.083_b0075","series-title":"Proceedings of the 26th international conference on world wide web","first-page":"173","article-title":"Neural collaborative filtering","author":"He","year":"2017"},{"issue":"1","key":"10.1016\/j.ins.2021.01.083_b0080","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1145\/963770.963772","article-title":"Evaluating collaborative filtering recommender systems","volume":"22","author":"Herlocker","year":"2004","journal-title":"ACM Trans. Inform. Syst. (TOIS)"},{"key":"10.1016\/j.ins.2021.01.083_b0085","unstructured":"B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk, Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015."},{"key":"10.1016\/j.ins.2021.01.083_b0090","doi-asserted-by":"crossref","first-page":"685","DOI":"10.1016\/j.ins.2018.04.004","article-title":"Conformal matrix factorization based recommender system","volume":"467","author":"Himabindu","year":"2018","journal-title":"Inf. Sci."},{"issue":"1","key":"10.1016\/j.ins.2021.01.083_b0095","first-page":"1303","article-title":"Stochastic variational inference","volume":"14","author":"Hoffman","year":"2013","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.ins.2021.01.083_b0100","first-page":"2","article-title":"Elbo surgery: yet another way to carve up the variational evidence lower bound","volume":"1","author":"Hoffman","year":"2016","journal-title":"Workshop in Advances in Approximate Bayesian Inference, NIPS"},{"issue":"5","key":"10.1016\/j.ins.2021.01.083_b0105","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/0893-6080(89)90020-8","article-title":"Multilayer feedforward networks are universal approximators","volume":"2","author":"Hornik","year":"1989","journal-title":"Neural Networks"},{"key":"10.1016\/j.ins.2021.01.083_b0110","series-title":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","first-page":"659","article-title":"Fism: factored item similarity models for top-n recommender systems","author":"Kabbur","year":"2013"},{"key":"10.1016\/j.ins.2021.01.083_b0115","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.ins.2017.06.026","article-title":"Deep hybrid recommender systems via exploiting document context and statistics of items","volume":"417","author":"Kim","year":"2017","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.01.083_b0120","unstructured":"D.P. Kingma, M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013."},{"key":"10.1016\/j.ins.2021.01.083_b0125","unstructured":"R. Krishnan, D. Liang, M. Hoffman, On the challenges of learning with inference networks on sparse, high-dimensional data, in: International Conference on Artificial Intelligence and Statistics. PMLR, 2018, pp. 143\u2013151."},{"key":"10.1016\/j.ins.2021.01.083_b0130","series-title":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","first-page":"1139","article-title":"Augmented variational autoencoders for collaborative filtering with auxiliary information","author":"Lee","year":"2017"},{"key":"10.1016\/j.ins.2021.01.083_b0135","series-title":"Proceedings of the 24th ACM International on Conference on Information and Knowledge Management","first-page":"811","article-title":"Deep collaborative filtering via marginalized denoising auto-encoder","author":"Li","year":"2015"},{"key":"10.1016\/j.ins.2021.01.083_b0140","series-title":"Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining","first-page":"305","article-title":"Collaborative variational autoencoder for recommender systems","author":"Li","year":"2017"},{"key":"10.1016\/j.ins.2021.01.083_b0145","series-title":"Proceedings of the 2018 World Wide Web Conference","first-page":"689","article-title":"Variational autoencoders for collaborative filtering","author":"Liang","year":"2018"},{"key":"10.1016\/j.ins.2021.01.083_b0150","unstructured":"Y. J. Lim and Y. W. Teh. Variational bayesian approach to movie rating prediction. In Proceedings of KDD cup and workshop, volume 7, pages 15\u201321. Citeseer, 2007."},{"key":"10.1016\/j.ins.2021.01.083_b0155","series-title":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","first-page":"393","article-title":"Co-embedding attributed networks","author":"Meng","year":"2019"},{"key":"10.1016\/j.ins.2021.01.083_b0160","unstructured":"A. Mnih, R.R. Salakhutdinov, Probabilistic matrix factorization, in: Advances in neural information processing systems, 2008, pp. 1257\u20131264."},{"key":"10.1016\/j.ins.2021.01.083_b0165","unstructured":"S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, Bpr: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618, 2012."},{"key":"10.1016\/j.ins.2021.01.083_b0170","unstructured":"D. J. Rezende, S. Mohamed, D. Wierstra, Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014."},{"key":"10.1016\/j.ins.2021.01.083_b0175","series-title":"Proceedings of the 25th international conference on Machine learning","first-page":"880","article-title":"Bayesian probabilistic matrix factorization using markov chain monte carlo","author":"Salakhutdinov","year":"2008"},{"key":"10.1016\/j.ins.2021.01.083_b0180","series-title":"Proceedings of the 24th international conference on Machine learning","first-page":"791","article-title":"Restricted boltzmann machines for collaborative filtering","author":"Salakhutdinov","year":"2007"},{"key":"10.1016\/j.ins.2021.01.083_b0185","series-title":"Proceedings of the 24th international conference on World Wide Web","first-page":"111","article-title":"Autorec: autoencoders meet collaborative filtering","author":"Sedhain","year":"2015"},{"issue":"2","key":"10.1016\/j.ins.2021.01.083_b0190","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3108148","article-title":"Local representative-based matrix factorization for cold-start recommendation","volume":"36","author":"Shi","year":"2017","journal-title":"ACM Trans. Inf. Syst."},{"key":"10.1016\/j.ins.2021.01.083_b0195","unstructured":"R. Shu, H.H. Bui, S. Zhao, M.J. Kochenderfer, S. Ermon, Amortized inference regularization, in: Advances in Neural Information Processing Systems, 2018, pp. 4393\u20134402."},{"issue":"1","key":"10.1016\/j.ins.2021.01.083_b0200","first-page":"1929","article-title":"Dropout: a simple way to prevent neural networks from overfitting","volume":"15","author":"Srivastava","year":"2014","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.ins.2021.01.083_b0205","article-title":"Collaborative filtering with stacked denoising autoencoders and sparse inputs","author":"Strub","year":"2020","journal-title":"NIPS Workshop on Machine Learning for eCommerce"},{"key":"10.1016\/j.ins.2021.01.083_b0210","doi-asserted-by":"crossref","unstructured":"M.J. Wainwright, M.I. Jordan, Graphical models, exponential families, and variational inference, Now Publishers Inc, 2008.","DOI":"10.1561\/9781601981851"},{"key":"10.1016\/j.ins.2021.01.083_b0215","series-title":"Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining","first-page":"448","article-title":"Collaborative topic modeling for recommending scientific articles","author":"Wang","year":"2011"},{"key":"10.1016\/j.ins.2021.01.083_b0220","series-title":"Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining","first-page":"1235","article-title":"Collaborative deep learning for recommender systems","author":"Wang","year":"2015"},{"key":"10.1016\/j.ins.2021.01.083_b0225","series-title":"Proceedings of the 26th International Conference on World Wide Web","first-page":"391","article-title":"What your images reveal: exploiting visual contents for point-of-interest recommendation","author":"Wang","year":"2017"},{"key":"10.1016\/j.ins.2021.01.083_b0230","series-title":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","first-page":"153","article-title":"Collaborative denoising auto-encoders for top-n recommender systems","author":"Wu","year":"2016"},{"key":"10.1016\/j.ins.2021.01.083_b0235","series-title":"IJCAI, Melbourne, Australia","first-page":"3203","article-title":"Deep matrix factorization models for recommender systems","author":"Xue","year":"2017"},{"key":"10.1016\/j.ins.2021.01.083_b0240","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.ins.2019.09.007","article-title":"Attention-based context-aware sequential recommendation model","volume":"510","author":"Yuan","year":"2020","journal-title":"Inf. Sci."},{"issue":"1","key":"10.1016\/j.ins.2021.01.083_b0245","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3158369","article-title":"Deep learning based recommender system: a survey and new perspectives","volume":"52","author":"Zhang","year":"2019","journal-title":"ACM Computing Surveys (CSUR)"},{"key":"10.1016\/j.ins.2021.01.083_b0250","series-title":"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining","first-page":"425","article-title":"Joint deep modeling of users and items using reviews for recommendation","author":"Zheng","year":"2017"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521001249?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521001249?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,24]],"date-time":"2022-12-24T10:01:00Z","timestamp":1671876060000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025521001249"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7]]},"references-count":50,"alternative-id":["S0020025521001249"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2021.01.083","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2021,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Two-step hybrid collaborative filtering using deep variational Bayesian autoencoders","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2021.01.083","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}