{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,4]],"date-time":"2024-07-04T17:46:06Z","timestamp":1720115166400},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,2,4]],"date-time":"2021-02-04T00:00:00Z","timestamp":1612396800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013804","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013804","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.ins.2021.01.044","type":"journal-article","created":{"date-parts":[[2021,2,5]],"date-time":"2021-02-05T21:45:10Z","timestamp":1612561510000},"page":"543-559","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Real-time foreground object segmentation networks using long and short skip connections"],"prefix":"10.1016","volume":"571","author":[{"given":"Cong","family":"Lin","sequence":"first","affiliation":[]},{"given":"Shijie","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Shaodi","family":"You","sequence":"additional","affiliation":[]},{"given":"Xiaoxiang","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Zhiyu","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.ins.2021.01.044_b0005","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1109\/TIP.2004.838698","article-title":"Image change detection algorithms: a systematic survey","volume":"14","author":"Radke","year":"2005","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2021.01.044_b0010","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.ins.2018.12.047","article-title":"Background-foreground interaction for moving object detection in dynamic scenes","volume":"483","author":"Chen","year":"2019","journal-title":"Inf. Sci."},{"issue":"2","key":"10.1016\/j.ins.2021.01.044_b0015","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1109\/TPAMI.2013.124","article-title":"Scene-specific pedestrian detection for static video surveillance","volume":"36","author":"Wang","year":"2014","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2021.01.044_b0020","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.jvcir.2016.05.009","article-title":"A real-time detector for parked vehicles based on hybrid background modeling","volume":"39","author":"Pun","year":"2016","journal-title":"J. Vis. Commun. Image Represent."},{"issue":"3","key":"10.1016\/j.ins.2021.01.044_b0025","doi-asserted-by":"crossref","first-page":"624","DOI":"10.1109\/TCSVT.2016.2589838","article-title":"Evaluation of low-level features for real-world surveillance event detection","volume":"27","author":"Xian","year":"2017","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.ins.2021.01.044_b0030","doi-asserted-by":"crossref","unstructured":"C. Stauffer, W.E.L. Grimson, Adaptive background mixture models for real-time tracking, in: Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), Vol. 2, 1999, pp. 246\u2013252 Vol. 2. https:\/\/doi.org\/10.1109\/CVPR.1999.784637.","DOI":"10.1109\/CVPR.1999.784637"},{"issue":"3","key":"10.1016\/j.ins.2021.01.044_b0035","doi-asserted-by":"crossref","first-page":"893","DOI":"10.1109\/TMI.2015.2501462","article-title":"Sensitivity enhancement in magnetic particle imaging by background subtraction","volume":"35","author":"Them","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.ins.2021.01.044_b0040","doi-asserted-by":"crossref","unstructured":"A. Basharat, A. Gritai, M. Shah, Learning object motion patterns for anomaly detection and improved object detection, in: 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1\u20138. https:\/\/doi.org\/10.1109\/CVPR.2008.4587510.","DOI":"10.1109\/CVPR.2008.4587510"},{"issue":"6","key":"10.1016\/j.ins.2021.01.044_b0045","doi-asserted-by":"crossref","first-page":"1709","DOI":"10.1109\/TIP.2010.2101613","article-title":"Vibe: A universal background subtraction algorithm for video sequences","volume":"20","author":"Barnich","year":"2011","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2021.01.044_b0050","doi-asserted-by":"crossref","first-page":"592","DOI":"10.1016\/j.ins.2019.03.029","article-title":"A novel gpu-aware histogram-based algorithm for supporting moving object segmentation in big-data-based iot application scenarios","volume":"496","author":"Cuzzocrea","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2021.01.044_b0055","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1016\/j.patrec.2018.08.002","article-title":"Foreground segmentation using convolutional neural networks for multiscale feature encoding","volume":"112","author":"Lim","year":"2018","journal-title":"Pattern Recogn. Lett."},{"issue":"9","key":"10.1016\/j.ins.2021.01.044_b0060","doi-asserted-by":"crossref","first-page":"2567","DOI":"10.1109\/TCSVT.2017.2770319","article-title":"Pixelwise deep sequence learning for moving object detection","volume":"29","author":"Chen","year":"2019","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.ins.2021.01.044_b0065","doi-asserted-by":"crossref","unstructured":"Y. Wang, P. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, P. Ishwar, Cdnet 2014: An expanded change detection benchmark dataset, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014, pp. 393\u2013400. https:\/\/doi.org\/10.1109\/CVPRW.2014.126.","DOI":"10.1109\/CVPRW.2014.126"},{"key":"10.1016\/j.ins.2021.01.044_b0070","series-title":"New Trends in Image Analysis and Processing \u2013 ICIAP 2015 Workshops","first-page":"469","article-title":"Towards benchmarking scene background initialization","author":"Maddalena","year":"2015"},{"key":"10.1016\/j.ins.2021.01.044_b0075","doi-asserted-by":"crossref","unstructured":"Z. Zivkovic, Improved adaptive gaussian mixture model for background subtraction, in: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, Vol. 2, 2004, pp. 28\u201331 Vol. 2. https:\/\/doi.org\/10.1109\/ICPR.2004.1333992.","DOI":"10.1109\/ICPR.2004.1333992"},{"issue":"6","key":"10.1016\/j.ins.2021.01.044_b0080","doi-asserted-by":"crossref","first-page":"1330","DOI":"10.1109\/TCSVT.2017.2665970","article-title":"Foreground segmentation in videos combining general gaussian mixture modeling and spatial information","volume":"28","author":"Boulmerka","year":"2018","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"issue":"10","key":"10.1016\/j.ins.2021.01.044_b0085","doi-asserted-by":"crossref","first-page":"4810","DOI":"10.1109\/TIP.2018.2845123","article-title":"Robust foreground estimation via structured gaussian scale mixture modeling","volume":"27","author":"Shi","year":"2018","journal-title":"IEEE Trans. Image Process."},{"issue":"2","key":"10.1016\/j.ins.2021.01.044_b0090","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1007\/s00521-009-0285-8","article-title":"A fuzzy spatial coherence-based approach to background\/foreground separation for moving object detection","volume":"19","author":"Maddalena","year":"2010","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.ins.2021.01.044_b0095","first-page":"295","article-title":"Design and fpga implementation of real-time edge detectors based on interval type-2 fuzzy systems","volume":"33","author":"Ontiveros","year":"2019","journal-title":"J. Multiple-Valued Logic Soft Comput."},{"key":"10.1016\/j.ins.2021.01.044_b0100","first-page":"431","article-title":"Edge detection approach based on type-2 fuzzy images","volume":"33","author":"Gonzalez","year":"2019","journal-title":"J. Multiple-Valued Logic Soft Comput."},{"issue":"6","key":"10.1016\/j.ins.2021.01.044_b0105","doi-asserted-by":"crossref","first-page":"1515","DOI":"10.1109\/TFUZZ.2013.2297159","article-title":"Edge-detection method for image processing based on generalized type-2 fuzzy logic","volume":"22","author":"Melin","year":"2014","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"8","key":"10.1016\/j.ins.2021.01.044_b0110","doi-asserted-by":"crossref","DOI":"10.3390\/jimaging5080071","article-title":"General type-2 fuzzy sugeno integral for edge detection","volume":"5","author":"Mart\u00ednez","year":"2019","journal-title":"J. Imaging"},{"key":"10.1016\/j.ins.2021.01.044_b0115","doi-asserted-by":"crossref","first-page":"631","DOI":"10.1016\/j.asoc.2014.12.010","article-title":"Optimization of interval type-2 fuzzy systems for image edge detection","volume":"47","author":"Gonzalez","year":"2016","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2021.01.044_b0120","doi-asserted-by":"crossref","unstructured":"M. Hofmann, P. Tiefenbacher, G. Rigoll, Background segmentation with feedback: The pixel-based adaptive segmenter, in: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2012, pp. 38\u201343. https:\/\/doi.org\/10.1109\/CVPRW.2012.6238925.","DOI":"10.1109\/CVPRW.2012.6238925"},{"issue":"9","key":"10.1016\/j.ins.2021.01.044_b0125","doi-asserted-by":"crossref","first-page":"1130","DOI":"10.1109\/LSP.2014.2326916","article-title":"Scene dynamics estimation for parameter adjustment of gaussian mixture models","volume":"21","author":"Zhang","year":"2014","journal-title":"IEEE Signal Process. Lett."},{"issue":"1","key":"10.1016\/j.ins.2021.01.044_b0130","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1109\/TIP.2014.2378053","article-title":"Subsense: A universal change detection method with local adaptive sensitivity","volume":"24","author":"St-Charles","year":"2015","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2021.01.044_b0135","doi-asserted-by":"crossref","unstructured":"P. St-Charles, G. Bilodeau, R. Bergevin, A self-adjusting approach to change detection based on background word consensus, in: 2015 IEEE Winter Conference on Applications of Computer Vision, 2015, pp. 990\u2013997. https:\/\/doi.org\/10.1109\/WACV.2015.137.","DOI":"10.1109\/WACV.2015.137"},{"issue":"9","key":"10.1016\/j.ins.2021.01.044_b0140","doi-asserted-by":"crossref","first-page":"2105","DOI":"10.1109\/TCSVT.2017.2711659","article-title":"Wesambe: A weight-sample-based method for background subtraction","volume":"28","author":"Jiang","year":"2018","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.ins.2021.01.044_b0145","article-title":"Background subtraction with multi-scale structured low-rank and sparse factorization","author":"Zheng","year":"2018","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.ins.2021.01.044_b0150","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1117\/1.JEI.27.2.023002","article-title":"\u00d6mer Nezih Gerek, Swcd: a sliding window and self-regulated learning-based background updating method for change detection in videos","volume":"27","author":"Isik","year":"2018","journal-title":"J. Electron. Imaging"},{"key":"10.1016\/j.ins.2021.01.044_b0155","doi-asserted-by":"crossref","unstructured":"K. Lim, W. Jang, C. Kim, Background subtraction using encoder-decoder structured convolutional neural network, in: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2017, pp. 1\u20136. https:\/\/doi.org\/10.1109\/AVSS.2017.8078547.","DOI":"10.1109\/AVSS.2017.8078547"},{"key":"10.1016\/j.ins.2021.01.044_b0160","doi-asserted-by":"crossref","unstructured":"Y. Wang, Z. Luo, P.-M. Jodoin, Interactive deep learning method for segmenting moving objects, Pattern Recognition Letters 96 (2017) 66\u201375, scene Background Modeling and Initialization. https:\/\/doi.org\/10.1016\/j.patrec.2016.09.014. URL http:\/\/www.sciencedirect.com\/science\/article\/pii\/S0167865516302471.","DOI":"10.1016\/j.patrec.2016.09.014"},{"key":"10.1016\/j.ins.2021.01.044_b0165","doi-asserted-by":"crossref","first-page":"635","DOI":"10.1016\/j.patcog.2017.09.040","article-title":"A deep convolutional neural network for video sequence background subtraction","volume":"76","author":"Babaee","year":"2018","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.ins.2021.01.044_b0170","doi-asserted-by":"crossref","unstructured":"R. Wang, F. Bunyak, G. Seetharaman, K. Palaniappan, Static and moving object detection using flux tensor with split gaussian models, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014, pp. 420\u2013424. https:\/\/doi.org\/10.1109\/CVPRW.2014.68.","DOI":"10.1109\/CVPRW.2014.68"},{"issue":"12","key":"10.1016\/j.ins.2021.01.044_b0175","doi-asserted-by":"crossref","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","article-title":"Segnet: A deep convolutional encoder-decoder architecture for image segmentation","volume":"39","author":"Badrinarayanan","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2021.01.044_b0180","series-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2014"},{"key":"10.1016\/j.ins.2021.01.044_b0185","doi-asserted-by":"crossref","first-page":"16010","DOI":"10.1109\/ACCESS.2018.2817129","article-title":"Background subtraction using multiscale fully convolutional network","volume":"6","author":"Zeng","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.ins.2021.01.044_b0190","doi-asserted-by":"crossref","unstructured":"M. Ozan Tezcan, P. Ishwar, J. Konrad, BSUV-Net: A Fully-Convolutional Neural Network for Background Subtraction of Unseen Videos, arXiv e-prints (2019) arXiv:1907.11371.","DOI":"10.1109\/WACV45572.2020.9093464"},{"key":"10.1016\/j.ins.2021.01.044_b0195","doi-asserted-by":"crossref","unstructured":"O. Ronneberger, P.Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: Medical Image Computing and Computer-Assisted Intervention (MICCAI), Vol. 9351 of LNCS, Springer, 2015, pp. 234\u2013241, (available on arXiv:1505.04597 [cs.CV]). URL http:\/\/lmb.informatik.uni-freiburg.de\/Publications\/2015\/RFB15a.","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"10.1016\/j.ins.2021.01.044_b0200","first-page":"266","article-title":"An end-to-end deep learning approach for simultaneous background modeling and subtraction","author":"Mond\u00e9jar-Guerra","year":"2019","journal-title":"British Machine Vision Conference (BMCV)"},{"issue":"4","key":"10.1016\/j.ins.2021.01.044_b0205","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs","volume":"40","author":"Chen","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2021.01.044_b0210","series-title":"Deep residual learning for image recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"770","author":"He","year":"2016"},{"key":"10.1016\/j.ins.2021.01.044_b0215","doi-asserted-by":"crossref","unstructured":"W. Sun, S. You, J. Walker, K. Li, N. Barnes, Structural edge detection: A dataset and benchmark, in: 2018 Digital Image Computing: Techniques and Applications (DICTA), 2018, pp. 1\u20138. https:\/\/doi.org\/10.1109\/DICTA.2018.8615801.","DOI":"10.1109\/DICTA.2018.8615801"},{"key":"10.1016\/j.ins.2021.01.044_b0220","doi-asserted-by":"crossref","unstructured":"D. Feng, N. Barnes, S. You, C. McCarthy, Local background enclosure for rgb-d salient object detection, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2343\u20132350. https:\/\/doi.org\/10.1109\/CVPR.2016.257.","DOI":"10.1109\/CVPR.2016.257"},{"issue":"1","key":"10.1016\/j.ins.2021.01.044_b0225","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1109\/TIP.2017.2756825","article-title":"Edge preserving and multi-scale contextual neural network for salient object detection","volume":"27","author":"Wang","year":"2018","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2021.01.044_b0230","series-title":"Computer Vision \u2013 ECCV 2016","first-page":"694","article-title":"Perceptual losses for real-time style transfer and super-resolution","author":"Johnson","year":"2016"},{"key":"10.1016\/j.ins.2021.01.044_b0235","series-title":"Deep Learning and Data Labeling for Medical Applications","first-page":"179","article-title":"The importance of skip connections in biomedical image segmentation","author":"Drozdzal","year":"2016"},{"key":"10.1016\/j.ins.2021.01.044_b0240","unstructured":"A. Paszke, A. Chaurasia, S. Kim, E. Culurciello, Enet: A deep neural network architecture for real-time semantic segmentation, CoRR abs\/1606.02147 (2016). arXiv:1606.02147."},{"key":"10.1016\/j.ins.2021.01.044_b0245","doi-asserted-by":"crossref","unstructured":"Yingying Chen, Jinqiao Wang, Hanqing Lu, Learning sharable models for robust background subtraction, in: 2015 IEEE International Conference on Multimedia and Expo (ICME), 2015, pp. 1\u20136. https:\/\/doi.org\/10.1109\/ICME.2015.7177419.","DOI":"10.1109\/ICME.2015.7177419"},{"issue":"6","key":"10.1016\/j.ins.2021.01.044_b0250","doi-asserted-by":"crossref","first-page":"914","DOI":"10.1109\/TEVC.2017.2694160","article-title":"Combination of video change detection algorithms by genetic programming","volume":"21","author":"Bianco","year":"2017","journal-title":"IEEE Trans. Evol. Comput."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521000827?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025521000827?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,8,7]],"date-time":"2021-08-07T17:37:35Z","timestamp":1628357855000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025521000827"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":50,"alternative-id":["S0020025521000827"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2021.01.044","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Real-time foreground object segmentation networks using long and short skip connections","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2021.01.044","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 The Author(s). Published by Elsevier Inc.","name":"copyright","label":"Copyright"}]}}