{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:39:52Z","timestamp":1740112792847,"version":"3.37.3"},"reference-count":30,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1016\/j.ins.2020.12.009","type":"journal-article","created":{"date-parts":[[2021,2,4]],"date-time":"2021-02-04T10:04:55Z","timestamp":1612433095000},"page":"152-167","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Mutual-information-inspired heuristics for constraint-based causal structure learning"],"prefix":"10.1016","volume":"560","author":[{"given":"Xiaolong","family":"Qi","sequence":"first","affiliation":[]},{"given":"Xiaocong","family":"Fan","sequence":"additional","affiliation":[]},{"given":"Huiling","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Ling","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Gao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2020.12.009_b0005","doi-asserted-by":"crossref","first-page":"131","DOI":"10.3389\/fncom.2014.00131","article-title":"Bayesian networks in neuroscience: a survey","volume":"8","author":"Bielza","year":"2014","journal-title":"Front. Comput. Neurosci."},{"issue":"1","key":"10.1016\/j.ins.2020.12.009_b0010","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1007\/s10664-012-9218-8","article-title":"Software defect prediction using bayesian networks","volume":"19","author":"Okutan","year":"2014","journal-title":"Empir. Software Eng."},{"key":"10.1016\/j.ins.2020.12.009_b0015","first-page":"1","article-title":"A novel fault propagation path identification inference algorithm using parent nodes filter","author":"Sun","year":"2019","journal-title":"J. Data Sci."},{"issue":"4","key":"10.1016\/j.ins.2020.12.009_b0020","doi-asserted-by":"crossref","first-page":"671","DOI":"10.1016\/j.engappai.2010.06.002","article-title":"Overview on bayesian networks applications for dependability, risk analysis and maintenance areas","volume":"25","author":"Weber","year":"2012","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"6","key":"10.1016\/j.ins.2020.12.009_b0025","first-page":"1470","article-title":"Survey of causality discovery based on non-time series observation data","volume":"40","author":"Cai","year":"2017","journal-title":"Chin. J. Comput."},{"key":"10.1016\/j.ins.2020.12.009_b0030","doi-asserted-by":"crossref","unstructured":"P. Spirtes, K. Zhang, Causal discovery and inference: concepts and recent methodological advances, in: Applied Informatics, vol. 3, SpringerOpen, 2016, p. 3.","DOI":"10.1186\/s40535-016-0018-x"},{"key":"10.1016\/j.ins.2020.12.009_b0035","unstructured":"Y. Yu, J. Chen, T. Gao, M. Yu, Dag-gnn: dag structure learning with graph neural networks, in: International Conference on Machine Learning, 2019, pp. 7154\u20137163."},{"key":"10.1016\/j.ins.2020.12.009_b0040","unstructured":"S. Zhu, I. Ng, Z. Chen, Causal discovery with reinforcement learning, in: International Conference on Learning Representations, 2019."},{"issue":"4","key":"10.1016\/j.ins.2020.12.009_b0045","doi-asserted-by":"crossref","first-page":"425","DOI":"10.1007\/s13748-019-00194-y","article-title":"A survey on bayesian network structure learning from data","volume":"8","author":"Scanagatta","year":"2019","journal-title":"Prog. Artif. Intell."},{"key":"10.1016\/j.ins.2020.12.009_b0050","doi-asserted-by":"crossref","first-page":"272","DOI":"10.1016\/j.ins.2016.01.090","article-title":"Bnc-pso: structure learning of bayesian networks by particle swarm optimization","volume":"348","author":"Gheisari","year":"2016","journal-title":"Inf. Sci."},{"issue":"1","key":"10.1016\/j.ins.2020.12.009_b0055","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1140\/epjst\/e2015-02349-9","article-title":"Bayesian network structure learning using quantum annealing","volume":"224","author":"O\u2019Gorman","year":"2015","journal-title":"Eur. Phys. J. Special Top."},{"key":"10.1016\/j.ins.2020.12.009_b0060","unstructured":"T. Gao, K. Fadnis, M. Campbell, Local-to-global bayesian network structure learning, in: International Conference on Machine Learning, 2017, pp. 1193\u20131202."},{"key":"10.1016\/j.ins.2020.12.009_b0065","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1016\/j.ijar.2016.09.009","article-title":"Efficient score-based markov blanket discovery","volume":"80","author":"Gao","year":"2017","journal-title":"Int. J. Approx. Reason."},{"key":"10.1016\/j.ins.2020.12.009_b0070","doi-asserted-by":"crossref","unstructured":"J.I. Alonso-Barba, L. de la Ossa, O. Regnier-Coudert, J. McCall, J.A. G\u00e1mez, J.M. Puerta, Ant colony and surrogate tree-structured models for orderings-based bayesian network learning, in: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, ACM, 2015, pp. 543\u2013550","DOI":"10.1145\/2739480.2754806"},{"key":"10.1016\/j.ins.2020.12.009_b0075","first-page":"2285","article-title":"Advances in learning bayesian networks of bounded treewidth","author":"Nie","year":"2014","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.ins.2020.12.009_b0080","unstructured":"C. Meek, Causal inference and causal explanation with background knowledge, in: Uncertainty in Artificial Intelligence, 1995, pp. 403\u2013410."},{"year":"2000","series-title":"Causation, Prediction, and Search","author":"Spirtes","key":"10.1016\/j.ins.2020.12.009_b0085"},{"key":"10.1016\/j.ins.2020.12.009_b0090","doi-asserted-by":"crossref","unstructured":"J. Runge, Causal network reconstruction from time series: From theoretical assumptions to practical estimation, Chaos Interdisc. J. Nonlinear Sci. 28 (7) (2018) 075310:0\u201320.","DOI":"10.1063\/1.5025050"},{"key":"10.1016\/j.ins.2020.12.009_b0095","unstructured":"K. Zhang, B. Huang, J. Zhang, C. Glymour, B. Sch\u00f6lkopf, Causal discovery from nonstationary\/heterogeneous data: skeleton estimation and orientation determination, in: IJCAI: Proceedings of the Conference, vol. 2017, NIH Public Access, 2017, p. 1347."},{"issue":"1","key":"10.1016\/j.ins.2020.12.009_b0100","first-page":"3741","article-title":"Order-independent constraint-based causal structure learning","volume":"15","author":"Colombo","year":"2014","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.ins.2020.12.009_b0105","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.ijar.2019.08.004","article-title":"Learning bayesian network structures using weakest mutual-information-first strategy","volume":"114","author":"Qi","year":"2019","journal-title":"Int. J. Approx. Reason."},{"key":"10.1016\/j.ins.2020.12.009_b0110","unstructured":"J. Ramsey, P. Spirtes, J. Zhang, Adjacency-faithfulness and conservative causal inference, in: Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence, UAI\u201906, AUAI Press, Arlington, Virginia, USA, 2006, pp. 401\u2013408."},{"year":"2000","series-title":"Causality: Models, Reasoning, and Inference","author":"Pearl","key":"10.1016\/j.ins.2020.12.009_b0115"},{"key":"10.1016\/j.ins.2020.12.009_b0120","unstructured":"J. Dellert, Information-theoretic causal inference of lexical flow, Ph.D. thesis, Ph. D. dissertation, University of T\u00fcbingen (2017)."},{"year":"2012","series-title":"Elements of Information Theory","author":"Cover","key":"10.1016\/j.ins.2020.12.009_b0125"},{"issue":"5","key":"10.1016\/j.ins.2020.12.009_b0130","doi-asserted-by":"crossref","first-page":"628","DOI":"10.1109\/TKDE.2007.190732","article-title":"Improving bayesian network structure learning with mutual information-based node ordering in the k2 algorithm","volume":"20","author":"Chen","year":"2008","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2020.12.009_b0135","unstructured":"K. Yu, J. Li, L. Liu, A review on algorithms for constraint-based causal discovery, arXiv preprint arXiv:1611.03977."},{"issue":"1","key":"10.1016\/j.ins.2020.12.009_b0140","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1007\/s10994-006-6889-7","article-title":"The max-min hill-climbing bayesian network structure learning algorithm","volume":"65","author":"Tsamardinos","year":"2006","journal-title":"Mach. Learn."},{"key":"10.1016\/j.ins.2020.12.009_b0145","first-page":"1458","article-title":"Adaptive thresholding in structure learning of a bayesian network","author":"Lerner","year":"2013","journal-title":"IJCAI"},{"issue":"7","key":"10.1016\/j.ins.2020.12.009_b0150","doi-asserted-by":"crossref","first-page":"3952","DOI":"10.1109\/TII.2018.2884211","article-title":"Multimodal face-pose estimation with multitask manifold deep learning","volume":"15","author":"Hong","year":"2019","journal-title":"IEEE Trans. Ind. Inf."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025520311749?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025520311749?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,4,17]],"date-time":"2021-04-17T08:57:55Z","timestamp":1618649875000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025520311749"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":30,"alternative-id":["S0020025520311749"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2020.12.009","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2021,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Mutual-information-inspired heuristics for constraint-based causal structure learning","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2020.12.009","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}