{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:39:47Z","timestamp":1740112787526,"version":"3.37.3"},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundations of China","doi-asserted-by":"publisher","award":["61672522","61976216"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2021,4]]},"DOI":"10.1016\/j.ins.2020.11.050","type":"journal-article","created":{"date-parts":[[2020,12,13]],"date-time":"2020-12-13T13:34:52Z","timestamp":1607866492000},"page":"61-83","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":53,"special_numbering":"C","title":["A fast density peaks clustering algorithm with sparse search"],"prefix":"10.1016","volume":"554","author":[{"given":"Xiao","family":"Xu","sequence":"first","affiliation":[]},{"given":"Shifei","family":"Ding","sequence":"additional","affiliation":[]},{"given":"Yanru","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Lijuan","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Weikuan","family":"Jia","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.ins.2020.11.050_b0005","doi-asserted-by":"crossref","first-page":"1193","DOI":"10.1109\/TII.2017.2684807","article-title":"An incremental CFS algorithm for clustering large data in industrial internet of things","volume":"13","author":"Zhang","year":"2017","journal-title":"IEEE Trans. Ind. Inf."},{"issue":"3","key":"10.1016\/j.ins.2020.11.050_b0010","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1109\/TETC.2014.2330519","article-title":"A survey of clustering algorithms for big data: Taxonomy and empirical analysis","volume":"2","author":"Fahad","year":"2014","journal-title":"IEEE Trans. Emerg. Topics Comput."},{"key":"10.1016\/j.ins.2020.11.050_b0015","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.patcog.2017.04.021","article-title":"Consistency of mean partitions in consensus clustering","volume":"71","author":"Jain","year":"2017","journal-title":"Pattern Recog."},{"issue":"7","key":"10.1016\/j.ins.2020.11.050_b0020","doi-asserted-by":"crossref","first-page":"1626","DOI":"10.1109\/TIFS.2018.2796999","article-title":"Face clustering: Representation and pairwise constraints","volume":"13","author":"Shi","year":"2018","journal-title":"IEEE Trans. Inform. Forensic Secur."},{"key":"10.1016\/j.ins.2020.11.050_b0025","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.inffus.2017.09.013","article-title":"Revealing community structures by ensemble clustering using group diffusion","volume":"42","author":"Ivannikova","year":"2018","journal-title":"Inform. Fusion"},{"key":"10.1016\/j.ins.2020.11.050_b0030","first-page":"374","article-title":"Parallel spectral clustering","volume":"5212","author":"Yangqiu","year":"2008","journal-title":"Proc. KDD"},{"key":"10.1016\/j.ins.2020.11.050_b0035","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2019.08.060","article-title":"Low-rank local tangent space embedding for subspace clustering","volume":"508","author":"Deng","year":"2020","journal-title":"Inform. Sci."},{"key":"10.1016\/j.ins.2020.11.050_b0040","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.eswa.2019.01.074","article-title":"Estimating the number of clusters in a dataset via consensus clustering","volume":"125","author":"\u00dcnl\u00fc","year":"2019","journal-title":"Expert Syst. Appl."},{"issue":"5814","key":"10.1016\/j.ins.2020.11.050_b0045","doi-asserted-by":"crossref","first-page":"972","DOI":"10.1126\/science.1136800","article-title":"Clustering by passing messages between data points","volume":"315","author":"Frey","year":"2007","journal-title":"Science"},{"issue":"4","key":"10.1016\/j.ins.2020.11.050_b0050","doi-asserted-by":"crossref","first-page":"1620","DOI":"10.1109\/TII.2016.2628747","article-title":"A fast density and grid based clustering method for data with arbitrary shapes and noise","volume":"13","author":"Wu","year":"2017","journal-title":"IEEE Trans. Ind. Inf."},{"issue":"12","key":"10.1016\/j.ins.2020.11.050_b0055","first-page":"398","article-title":"Review on density based clustering algorithms for very large datasets","volume":"3","author":"Lovely","year":"2013","journal-title":"Int. J. Emerg. Technol. Adv. Eng."},{"key":"10.1016\/j.ins.2020.11.050_b0060","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1016\/j.patcog.2018.05.030","article-title":"A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data","volume":"83","author":"Chen","year":"2018","journal-title":"Patt. Recog."},{"issue":"6191","key":"10.1016\/j.ins.2020.11.050_b0065","doi-asserted-by":"crossref","first-page":"1492","DOI":"10.1126\/science.1242072","article-title":"Clustering by fast search and find of density peaks","volume":"344","author":"Rodriguez","year":"2014","journal-title":"Science"},{"key":"10.1016\/j.ins.2020.11.050_b0070","doi-asserted-by":"crossref","first-page":"105841","DOI":"10.1016\/j.knosys.2020.105841","article-title":"Deep density-based image clustering","volume":"197","author":"Ren","year":"2020","journal-title":"Knowledge-Based Syst."},{"key":"10.1016\/j.ins.2020.11.050_b0075","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1016\/j.knosys.2017.07.027","article-title":"An entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neighborhood","volume":"133","author":"Ding","year":"2017","journal-title":"Knowledge-Based Syst."},{"key":"10.1016\/j.ins.2020.11.050_b0080","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.ins.2018.11.054","article-title":"Personalized recommendation based on hierarchical interest overlapping community","volume":"479","author":"Zheng","year":"2019","journal-title":"Inform. Sci."},{"key":"10.1016\/j.ins.2020.11.050_b0085","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/j.neucom.2015.11.091","article-title":"An improved density peaks-based clustering method for social circle discovery in social networks","volume":"179","author":"Wang","year":"2016","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.ins.2020.11.050_b0090","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1109\/TII.2018.2810226","article-title":"Feature trend extraction and adaptive density peaks search for intelligent fault diagnosis of machines","volume":"15","author":"Wang","year":"2019","journal-title":"IEEE Trans. Ind. Inf."},{"issue":"5","key":"10.1016\/j.ins.2020.11.050_b0095","doi-asserted-by":"crossref","first-page":"1680","DOI":"10.1109\/TCYB.2018.2817480","article-title":"Evolutionary multiobjective clustering and its applications to patient stratification","volume":"49","author":"Li","year":"2019","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2020.11.050_b0100","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/j.neucom.2016.01.102","article-title":"Clustering by fast search and find of density peaks via heat diffusion","volume":"208","author":"Mehmood","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2020.11.050_b0105","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.patrec.2017.10.025","article-title":"Parameter-free Laplacian centrality peaks clustering","volume":"100","author":"Yang","year":"2017","journal-title":"Pattern Recog. Lett."},{"key":"10.1016\/j.ins.2020.11.050_b0110","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.knosys.2016.02.001","article-title":"Study on density peaks clustering based on k-nearest neighbors and principal component analysis","volume":"99","author":"Du","year":"2016","journal-title":"Knowledge-Based Syst."},{"key":"10.1016\/j.ins.2020.11.050_b0115","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.ins.2016.03.011","article-title":"Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors","volume":"354","author":"Xie","year":"2016","journal-title":"Inform. Sci."},{"issue":"11","key":"10.1016\/j.ins.2020.11.050_b0120","first-page":"2419","article-title":"Large-scale density peaks clustering algorithm based on grid screening","volume":"55","author":"Xiao","year":"2018","journal-title":"J. Computer Res. Developm."},{"issue":"5","key":"10.1016\/j.ins.2020.11.050_b0125","doi-asserted-by":"crossref","first-page":"743","DOI":"10.1007\/s13042-016-0603-2","article-title":"DPCG: An efficient density peaks clustering algorithm based on grid","volume":"9","author":"Xu","year":"2018","journal-title":"Int. J. Mach. Learn. Cyber."},{"key":"10.1016\/j.ins.2020.11.050_b0130","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.knosys.2018.05.034","article-title":"An improved density peaks clustering algorithm with fast finding cluster centers","volume":"158","author":"Xu","year":"2018","journal-title":"Knowledge-Based Syst."},{"key":"10.1016\/j.ins.2020.11.050_b0135","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1016\/j.patcog.2017.06.023","article-title":"Fast density clustering strategies based on the k-means algorithm","volume":"71","author":"Bai","year":"2017","journal-title":"Pattern Recog."},{"issue":"6","key":"10.1016\/j.ins.2020.11.050_b0140","first-page":"1400","article-title":"EDDPC: An efficient distributed density peaks clustering algorithm","volume":"53","author":"Shufeng","year":"2016","journal-title":"J. Computer Res. Develop."},{"key":"10.1016\/j.ins.2020.11.050_b0145","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1016\/j.eswa.2017.11.020","article-title":"Comparative density peaks clustering","volume":"95","author":"Li","year":"2018","journal-title":"Expert Syst. Appl."},{"issue":"3","key":"10.1016\/j.ins.2020.11.050_b0150","doi-asserted-by":"crossref","first-page":"1573","DOI":"10.1109\/TGRS.2018.2867444","article-title":"Density peak-based noisy label detection for hyperspectral image classification","volume":"57","author":"Tu","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.ins.2020.11.050_b0155","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.bspc.2018.09.013","article-title":"Color perception algorithm of medical images using density peak based hierarchical clustering","volume":"48","author":"Zeng","year":"2019","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.ins.2020.11.050_b0160","doi-asserted-by":"crossref","first-page":"348","DOI":"10.1016\/j.neucom.2018.10.067","article-title":"Identifying cluster centroids from decision graph automatically using a statistical outlier detection method","volume":"329","author":"Yan","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2020.11.050_b0165","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.ins.2018.07.034","article-title":"I-nice: A new approach for identifying the number of clusters and initial cluster centres","volume":"466","author":"Masud","year":"2018","journal-title":"Inform. Sci."},{"issue":"8","key":"10.1016\/j.ins.2020.11.050_b0170","doi-asserted-by":"crossref","first-page":"1971","DOI":"10.1109\/TKDE.2016.2535209","article-title":"Automatic clustering via outward statistical testing on density metrics","volume":"28","author":"Wang","year":"2016","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2020.11.050_b0175","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1016\/j.ins.2016.01.071","article-title":"A fast density-based data stream clustering algorithm with cluster centers self-determined for mixed data","volume":"345","author":"Chen","year":"2016","journal-title":"Inform. Sci."},{"key":"10.1016\/j.ins.2020.11.050_b0180","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1016\/j.eswa.2017.05.046","article-title":"Active learning through density clustering","volume":"85","author":"Wang","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2020.11.050_b0185","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.ins.2016.08.086","article-title":"DenPEHC: Density peak based efficient hierarchical clustering","volume":"373","author":"Xu","year":"2016","journal-title":"Inform. Sci."},{"issue":"12","key":"10.1016\/j.ins.2020.11.050_b0190","first-page":"1","article-title":"Optimized density peaks clustering algorithm based on dissimilarity measure","volume":"31","author":"Ding Shifei","year":"2020","journal-title":"J. Software"},{"key":"10.1016\/j.ins.2020.11.050_b0195","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.knosys.2016.12.025","article-title":"Fat node leading tree for data stream clustering with density peaks","volume":"120","author":"Xu","year":"2017","journal-title":"Knowledge-Based Syst."},{"key":"10.1016\/j.ins.2020.11.050_b0200","doi-asserted-by":"crossref","first-page":"1718","DOI":"10.1109\/ACCESS.2017.2780109","article-title":"From partition-based clustering to density-based clustering: Fast find clusters with diverse shapes and densities in spatial databases","volume":"6","author":"Wang","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.ins.2020.11.050_b0205","doi-asserted-by":"crossref","unstructured":"Xu Xiaohua, Ju Yongsheng, Liang Yali, He Ping. Manifold density peaks clustering algorithm. Proceedings of 2015 Third International Conference on Advanced Cloud and Big Data. IEEE, 2015: 311-318.","DOI":"10.1109\/CBD.2015.57"},{"key":"10.1016\/j.ins.2020.11.050_b0210","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.physa.2018.09.002","article-title":"DPC-LG: Density peaks clustering based on logistic distribution and gravitation","volume":"514","author":"Jianhua","year":"2019","journal-title":"Physica A: Stat. Mech. Appl."},{"issue":"2","key":"10.1016\/j.ins.2020.11.050_b0215","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1007\/s13042-014-0255-z","article-title":"A Chinese expert disambiguation method based on semi-supervised graph clustering","volume":"6","author":"Jiang","year":"2015","journal-title":"Int. J. Mach. Learn. Cyber."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025520311488?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025520311488?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T21:33:39Z","timestamp":1617312819000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025520311488"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,4]]},"references-count":43,"alternative-id":["S0020025520311488"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2020.11.050","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2021,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A fast density peaks clustering algorithm with sparse search","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2020.11.050","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}