{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T11:10:34Z","timestamp":1726485034050},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100003977","name":"Israel Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003977","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2021,4]]},"DOI":"10.1016\/j.ins.2020.10.020","type":"journal-article","created":{"date-parts":[[2020,10,27]],"date-time":"2020-10-27T00:41:26Z","timestamp":1603759286000},"page":"353-375","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":29,"special_numbering":"C","title":["A guided FP-Growth algorithm for mining multitude-targeted item-sets and class association rules in imbalanced data"],"prefix":"10.1016","volume":"553","author":[{"given":"Lior","family":"Shabtay","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7680-9899","authenticated-orcid":false,"given":"Philippe","family":"Fournier-Viger","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8808-8937","authenticated-orcid":false,"given":"Rami","family":"Yaari","sequence":"additional","affiliation":[]},{"given":"Itai","family":"Dattner","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2016","series-title":"Frequent Pattern Mining","author":"Aggarwal","key":"10.1016\/j.ins.2020.10.020_b0005"},{"key":"10.1016\/j.ins.2020.10.020_b0010","first-page":"207","article-title":"Mining association rules between sets of items in large databases","volume":"vol. 22","author":"Agrawal","year":"1993"},{"key":"10.1016\/j.ins.2020.10.020_b0015","first-page":"487","article-title":"Fast algorithms for mining association rules","volume":"vol. 1215","author":"Agrawal","year":"1994"},{"key":"10.1016\/j.ins.2020.10.020_b0020","doi-asserted-by":"crossref","first-page":"536","DOI":"10.1016\/j.asoc.2017.11.013","article-title":"Wcba: Weighted classification based on association rules algorithm for breast cancer disease","volume":"62","author":"Alwidian","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2020.10.020_b0025","unstructured":"A. Asuncion, D. Newman, (University of California, Irvine, School of Information and Computer, 2007). UCI machine learning repository."},{"key":"10.1016\/j.ins.2020.10.020_b0030","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1016\/j.ins.2019.01.047","article-title":"Interpretable regularized class association rules algorithm for classification in a categorical data space","volume":"483","author":"Azmi","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2020.10.020_b0035","series-title":"Proceedings of the 8th Pacific-Asia Conference, on Knowledge Discovery and Data Mining","first-page":"155","article-title":"FP-Bonsai: The art of growing and pruning small FP-Trees","author":"Bonchi","year":"2004"},{"key":"10.1016\/j.ins.2020.10.020_b0040","unstructured":"Borgelt, C. (2005). An implementation of the fp-growth algorithm. In Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations (pp. 1\u20135). ACM."},{"key":"10.1016\/j.ins.2020.10.020_b0045","first-page":"437","article-title":"Frequent item set mining","volume":"2","author":"Borgelt","year":"2012","journal-title":"Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery"},{"key":"10.1016\/j.ins.2020.10.020_b0050","first-page":"195","article-title":"A performance evaluation of chi-square pruning techniques in class association rules optimization","author":"Chern-Tong","year":"2017"},{"key":"10.1016\/j.ins.2020.10.020_b0055","doi-asserted-by":"crossref","first-page":"1052","DOI":"10.1109\/TKDE.2004.44","article-title":"Mining frequent itemsets without support threshold: with and without item constraints","volume":"16","author":"Cheung","year":"2004","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2020.10.020_b0060","doi-asserted-by":"crossref","first-page":"863","DOI":"10.1613\/jair.1.11192","article-title":"Smote for learning from imbalanced data: progress and challenges, marking the 15-year anniversary","volume":"61","author":"Fern\u00e1ndez","year":"2018","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.ins.2020.10.020_b0065","article-title":"A survey of itemset mining","volume":"7","author":"Fournier-Viger","year":"2017","journal-title":"Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery"},{"key":"10.1016\/j.ins.2020.10.020_b0070","series-title":"Proceedings of the 9th Intern. Conference on Advanced Data Mining and Applications","first-page":"95","article-title":"MEIT: Memory efficient itemset tree for targeted association rule mining","author":"Fournier-Viger","year":"2013"},{"key":"10.1016\/j.ins.2020.10.020_b0075","first-page":"1","article-title":"Privacy protection of class association rules produced by medical datasets","author":"Garach","year":"2019"},{"key":"10.1016\/j.ins.2020.10.020_b0080","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1504\/IJDMMM.2014.065149","article-title":"Towards robust classifiers using optimal rule discovery","volume":"6","author":"Ghanem","year":"2014","journal-title":"Int. J. Data Mining, Modelling Manage."},{"key":"10.1016\/j.ins.2020.10.020_b0085","series-title":"Proceedings of the 2nd Australasian Data Mining Conference","first-page":"221","article-title":"Association rule discovery with unbalanced class distributions","author":"Gu","year":"2003"},{"key":"10.1016\/j.ins.2020.10.020_b0090","article-title":"Mining frequent patterns without candidate generation","volume":"vol. 29","author":"Han","year":"2000"},{"key":"10.1016\/j.ins.2020.10.020_b0095","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1023\/B:DAMI.0000005258.31418.83","article-title":"Mining frequent patterns without candidate generation: A frequent-pattern tree approach","volume":"8","author":"Han","year":"2004","journal-title":"Data Mining Knowl. Discovery"},{"key":"10.1016\/j.ins.2020.10.020_b0100","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.dss.2004.09.007","article-title":"Mining association rules with multiple minimum supports: a new mining algorithm and a support tuning mechanism","volume":"42","author":"Hu","year":"2006","journal-title":"Decis. Support Syst."},{"key":"10.1016\/j.ins.2020.10.020_b0105","doi-asserted-by":"crossref","first-page":"769","DOI":"10.2478\/amcs-2019-0057","article-title":"Using information on class interrelations to improve classification of multiclass imbalanced data: A new resampling algorithm","volume":"29","author":"Janicka","year":"2019","journal-title":"Int. J. Appl. Math. Comput. Sci."},{"key":"10.1016\/j.ins.2020.10.020_b0110","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1007\/s13748-016-0094-0","article-title":"Learning from imbalanced data: open challenges and future directions","volume":"5","author":"Krawczyk","year":"2016","journal-title":"Progress Artif. Intell."},{"key":"10.1016\/j.ins.2020.10.020_b0115","doi-asserted-by":"crossref","first-page":"1522","DOI":"10.1109\/TKDE.2003.1245290","article-title":"Itemset trees for targeted association querying","volume":"15","author":"Kubat","year":"2003","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2020.10.020_b0120","series-title":"Proceedings of the 20th International Symposium on Methodologies for Intelligent Systems","first-page":"51","article-title":"Min-max itemset trees for dense and categorical datasets","author":"Lavergne","year":"2012"},{"key":"10.1016\/j.ins.2020.10.020_b0125","unstructured":"J.B. Lewis, Enhancements to itemset tree. University of South Alabama, M.Sc. thesis, 2016."},{"key":"10.1016\/j.ins.2020.10.020_b0130","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.inffus.2017.03.007","article-title":"Adaptive multi-objective swarm fusion for imbalanced data classification","volume":"39","author":"Li","year":"2018","journal-title":"Inform. Fusion"},{"key":"10.1016\/j.ins.2020.10.020_b0135","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1016\/S0950-7051(02)00024-2","article-title":"Mining the optimal class association rule set","volume":"15","author":"Li","year":"2002","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2020.10.020_b0140","series-title":"Proceedings of the 2001 IEEE International Conference on Data Mining","first-page":"369","article-title":"CMAR: Accurate and efficient classification based on multiple class-association rules","author":"Li","year":"2001"},{"key":"10.1016\/j.ins.2020.10.020_b0145","doi-asserted-by":"crossref","first-page":"105","DOI":"10.3233\/IDA-2006-10202","article-title":"Searching for high-support itemsets in itemset trees","volume":"10","author":"Li","year":"2006","journal-title":"Intell. Data Anal."},{"key":"10.1016\/j.ins.2020.10.020_b0150","series-title":"Proceedings of the fourth international conference on knowledge discovery and data mining","first-page":"80","article-title":"Integrating classification and association rule mining","author":"Liu","year":"1998"},{"key":"10.1016\/j.ins.2020.10.020_b0155","series-title":"2018 24th International Conference on Pattern Recognition (ICPR)","first-page":"3114","article-title":"Identification of hypertension by mining class association rules from multi-dimensional features","author":"Liu","year":"2018"},{"key":"10.1016\/j.ins.2020.10.020_b0160","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1007\/s10489-014-0603-4","article-title":"An evolutionary algorithm for the discovery of rare class association rules in learning management systems","volume":"42","author":"Luna","year":"2015","journal-title":"Appl. Intell."},{"key":"10.1016\/j.ins.2020.10.020_b0165","doi-asserted-by":"crossref","first-page":"876","DOI":"10.1007\/BF02973451","article-title":"Efficient incremental maintenance of frequent patterns with fp-tree","volume":"19","author":"Ma","year":"2004","journal-title":"J. Computer Sci. Technol."},{"key":"10.1016\/j.ins.2020.10.020_b0170","unstructured":"C. Ndour, A. Diop, S. & Dossou-Gb\u00e9t\u00e9, Classification approach based on association rules mining for unbalanced data. arXiv preprint arXiv:1202.5514, 2012."},{"key":"10.1016\/j.ins.2020.10.020_b0175","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/j.ins.2015.05.006","article-title":"A novel method for constrained class association rule mining","volume":"320","author":"Nguyen","year":"2015","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2020.10.020_b0180","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.engappai.2014.08.013","article-title":"Ccar: An efficient method for mining class association rules with itemset constraints","volume":"37","author":"Nguyen","year":"2015","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.ins.2020.10.020_b0185","doi-asserted-by":"crossref","first-page":"1491","DOI":"10.1007\/s10489-017-1023-z","article-title":"Efficient method for updating class association rules in dynamic datasets with record deletion","volume":"48","author":"Nguyen","year":"2018","journal-title":"Appl. Intell."},{"key":"10.1016\/j.ins.2020.10.020_b0190","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1145\/568574.568580","article-title":"Constrained frequent pattern mining: a pattern-growth view","volume":"4","author":"Pei","year":"2002","journal-title":"SIGKDD Explor. Newsl."},{"key":"10.1016\/j.ins.2020.10.020_b0195","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1023\/B:DAMI.0000023674.74932.4c","article-title":"Pushing convertible constraints in frequent itemset mining","volume":"8","author":"Pei","year":"2004","journal-title":"Data Min. Knowl. Disc."},{"key":"10.1016\/j.ins.2020.10.020_b0200","doi-asserted-by":"crossref","first-page":"727","DOI":"10.1016\/j.asoc.2017.08.052","article-title":"Hesitant fuzzy decision tree approach for highly imbalanced data classification","volume":"61","author":"Sardari","year":"2017","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2020.10.020_b0205","first-page":"1","article-title":"Software defect prediction based on class-association rules","author":"Shao","year":"2017"},{"key":"10.1016\/j.ins.2020.10.020_b0210","doi-asserted-by":"crossref","first-page":"475","DOI":"10.1007\/s10115-012-0514-9","article-title":"Batch incremental processing for FP-tree construction using FP-Growth algorithm","volume":"33","author":"Totad","year":"2012","journal-title":"Knowl. Inform. Syst."},{"key":"10.1016\/j.ins.2020.10.020_b0215","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1007\/s10115-017-1126-1","article-title":"Dynamic affinity-based classification of multi-class imbalanced data with one-versus-one decomposition: a fuzzy rough set approach","volume":"56","author":"Vluymans","year":"2018","journal-title":"Knowl. Inf. Syst."},{"key":"10.1016\/j.ins.2020.10.020_b0220","series-title":"Proceedings of the 6th Pacific-Asia Conference, on Knowledge Discovery and Data Mining","first-page":"334","article-title":"Top down FP-Growth for association rule mining","author":"Wang","year":"2002"},{"key":"10.1016\/j.ins.2020.10.020_b0225","first-page":"190","article-title":"An effective algorithm for simultaneously mining frequent patterns and association rules","volume":"vol. 1","author":"Wei","year":"2008"},{"key":"10.1016\/j.ins.2020.10.020_b0230","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1016\/j.neucom.2016.09.120","article-title":"Class-specific cost regulation extreme learning machine for imbalanced classification","volume":"261","author":"Xiao","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2020.10.020_b0235","doi-asserted-by":"crossref","first-page":"1540","DOI":"10.1109\/TCYB.2016.2551735","article-title":"Maximum margin of twin spheres support vector machine for imbalanced data classification","volume":"47","author":"Xu","year":"2016","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2020.10.020_b0240","series-title":"Proceedings of the 2007 International Conference on Data Mining","first-page":"148","article-title":"Mining frequent itemsets using re-usable data structure","author":"Yakout","year":"2007"},{"key":"10.1016\/j.ins.2020.10.020_b0245","series-title":"Proceedings of the 2003 SIAM International Conference on Data Mining","first-page":"331","article-title":"CPAR: Classification based on predictive association rules","author":"Yin","year":"2003"},{"key":"10.1016\/j.ins.2020.10.020_b0250","doi-asserted-by":"crossref","first-page":"372","DOI":"10.1109\/69.846291","article-title":"Scalable algorithms for association mining","volume":"12","author":"Zaki","year":"2000","journal-title":"IEEE Trans. Knowl. Data Eng."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025520310100?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025520310100?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,1,14]],"date-time":"2021-01-14T14:41:25Z","timestamp":1610635285000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025520310100"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,4]]},"references-count":50,"alternative-id":["S0020025520310100"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2020.10.020","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2021,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A guided FP-Growth algorithm for mining multitude-targeted item-sets and class association rules in imbalanced data","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2020.10.020","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}