{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T18:53:04Z","timestamp":1735584784375},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,10,1]],"date-time":"2020-10-01T00:00:00Z","timestamp":1601510400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2020,10]]},"DOI":"10.1016\/j.ins.2020.05.127","type":"journal-article","created":{"date-parts":[[2020,6,9]],"date-time":"2020-06-09T15:20:46Z","timestamp":1591716046000},"page":"193-208","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":99,"special_numbering":"C","title":["Quantum generative adversarial network for generating discrete distribution"],"prefix":"10.1016","volume":"538","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7853-6647","authenticated-orcid":false,"given":"Haozhen","family":"Situ","sequence":"first","affiliation":[]},{"given":"Zhimin","family":"He","sequence":"additional","affiliation":[]},{"given":"Yuyi","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Lvzhou","family":"Li","sequence":"additional","affiliation":[]},{"given":"Shenggen","family":"Zheng","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2020.05.127_b0005","doi-asserted-by":"crossref","first-page":"2809","DOI":"10.12785\/amis\/080617","article-title":"An optimization algorithm for solving systems of singular boundary value problems","volume":"8","author":"Abo-Hammour","year":"2014","journal-title":"Appl. Math. Inf. Sci."},{"key":"10.1016\/j.ins.2020.05.127_b0010","doi-asserted-by":"crossref","first-page":"396","DOI":"10.1016\/j.ins.2014.03.128","article-title":"Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm","volume":"279","author":"Abu Arqub","year":"2014","journal-title":"Inform. Sci."},{"key":"10.1016\/j.ins.2020.05.127_b0015","doi-asserted-by":"crossref","first-page":"1591","DOI":"10.1007\/s00521-015-2110-x","article-title":"Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations","volume":"28","author":"Abu Arqub","year":"2017","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.ins.2020.05.127_b0020","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1093\/nsr\/nwy149","article-title":"Quantum machine learning","volume":"6","author":"Allcock","year":"2019","journal-title":"Natl. Sci. Rev."},{"key":"10.1016\/j.ins.2020.05.127_b0025","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1038\/s41534-019-0157-8","article-title":"A generative modeling approach for benchmarking and training shallow quantum circuits","volume":"5","author":"Benedetti","year":"2019","journal-title":"NPJ Quant. Inform."},{"key":"10.1016\/j.ins.2020.05.127_b0030","doi-asserted-by":"crossref","DOI":"10.1088\/1367-2630\/ab14b5","article-title":"Adversarial quantum circuit learning for pure state approximation","volume":"21","author":"Benedetti","year":"2019","journal-title":"New J. Phys."},{"key":"10.1016\/j.ins.2020.05.127_b0035","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1038\/nature23474","article-title":"Quantum machine learning","volume":"549","author":"Biamonte","year":"2017","journal-title":"Nature"},{"key":"10.1016\/j.ins.2020.05.127_b0040","doi-asserted-by":"crossref","first-page":"595","DOI":"10.1038\/s41567-018-0124-x","article-title":"Characterizing quantum supremacy in near-term devices","volume":"14","author":"Boixo","year":"2018","journal-title":"Nat. Phys."},{"key":"10.1016\/j.ins.2020.05.127_b0045","doi-asserted-by":"crossref","first-page":"863","DOI":"10.1007\/BF01397477","article-title":"Zur Quantenmechanik der Sto\u00dfvorg\u00e4nge","volume":"37","author":"Born","year":"1926","journal-title":"Z. Phys."},{"key":"10.1016\/j.ins.2020.05.127_b0050","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevLett.110.230501","article-title":"Experimental quantum computing to solve systems of linear equations","volume":"110","author":"Cai","year":"2013","journal-title":"Phys. Rev. Lett."},{"key":"10.1016\/j.ins.2020.05.127_b0055","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevLett.114.110504","article-title":"Entanglement-based machine learning on a quantum computer","volume":"114","author":"Cai","year":"2015","journal-title":"Phys. Rev. Lett."},{"key":"10.1016\/j.ins.2020.05.127_b0060","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2014.08.033","article-title":"Quantum artificial neural networks with applications","volume":"290","author":"Cao","year":"2015","journal-title":"Inform. Sci."},{"key":"10.1016\/j.ins.2020.05.127_b0065","series-title":"Proceedings of the 30th International Conference on Neural Information Processing Systems","first-page":"2172","article-title":"Infogan: Interpretable representation learning by information maximizing generative adversarial nets","author":"Chen","year":"2016"},{"key":"10.1016\/j.ins.2020.05.127_b0070","doi-asserted-by":"crossref","DOI":"10.1088\/1367-2630\/aae94a","article-title":"Learning the quantum algorithm for state overlap","volume":"20","author":"Cincio","year":"2018","journal-title":"New J. Phys."},{"key":"10.1016\/j.ins.2020.05.127_b0075","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevA.98.012324","article-title":"Quantum generative adversarial networks","volume":"98","author":"Dallaire-Demers","year":"2018","journal-title":"Phys. Rev. A"},{"key":"10.1016\/j.ins.2020.05.127_b0080","series-title":"Proceedings of the 29th International Conference on Neural Information Processing Systems","first-page":"1486","article-title":"Deep generative image models using a Laplacian pyramid of adversarial networks","author":"Denton","year":"2015"},{"key":"10.1016\/j.ins.2020.05.127_b0085","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevA.96.032301","article-title":"Quantum algorithm for support matrix machines","volume":"96","author":"Duan","year":"2017","journal-title":"Phys. Rev. A"},{"key":"10.1016\/j.ins.2020.05.127_b0090","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevLett.117.130501","article-title":"Quantum-enhanced machine learning","volume":"117","author":"Dunjko","year":"2016","journal-title":"Phys. Rev. Lett."},{"year":"2016","series-title":"Deep Learning","author":"Goodfellow","key":"10.1016\/j.ins.2020.05.127_b0095"},{"key":"10.1016\/j.ins.2020.05.127_b0100","series-title":"Proceedings of the 27th International Conference on Neural Information Processing Systems","first-page":"2672","article-title":"Generative adversarial nets","author":"Goodfellow","year":"2014"},{"key":"10.1016\/j.ins.2020.05.127_b0105","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevLett.103.150502","article-title":"Quantum algorithm for linear systems of equations","volume":"103","author":"Harrow","year":"2009","journal-title":"Phys. Rev. Lett."},{"key":"10.1016\/j.ins.2020.05.127_b0110","doi-asserted-by":"crossref","first-page":"eaav2761","DOI":"10.1126\/sciadv.aav2761","article-title":"Quantum generative adversarial learning in a superconducting quantum circuit","volume":"5","author":"Hu","year":"2019","journal-title":"Sci. Adv."},{"key":"10.1016\/j.ins.2020.05.127_b0115","doi-asserted-by":"crossref","DOI":"10.1088\/2058-9565\/aaea94","article-title":"Towards quantum machine learning with tensor networks","volume":"4","author":"Huggins","year":"2019","journal-title":"Quantum Sci. Technol."},{"key":"10.1016\/j.ins.2020.05.127_b0120","doi-asserted-by":"crossref","DOI":"10.1088\/2058-9565\/aada1f","article-title":"Quantum variational autoencoder","volume":"4","author":"Khoshaman","year":"2018","journal-title":"Quantum Sci. Technol."},{"key":"10.1016\/j.ins.2020.05.127_b0125","unstructured":"D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv: 1412.6980."},{"key":"10.1016\/j.ins.2020.05.127_b0130","unstructured":"D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv: 1312.6114."},{"key":"10.1016\/j.ins.2020.05.127_b0135","article-title":"Quantum autoencoders via quantum adders with genetic algorithms","volume":"4","author":"Lamata","year":"2019","journal-title":"Quantum Sci. Technol."},{"key":"10.1016\/j.ins.2020.05.127_b0140","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevA.98.062324","article-title":"Differentiable learning of quantum circuit Born machine","volume":"98","author":"Liu","year":"2018","journal-title":"Phys. Rev. A"},{"key":"10.1016\/j.ins.2020.05.127_b0145","doi-asserted-by":"crossref","first-page":"631","DOI":"10.1038\/nphys3029","article-title":"Quantum principal component analysis","volume":"10","author":"Lloyd","year":"2014","journal-title":"Nat. Phys."},{"key":"10.1016\/j.ins.2020.05.127_b0150","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevLett.121.040502","article-title":"Quantum generative adversarial learning","volume":"121","author":"Lloyd","year":"2018","journal-title":"Phys. Rev. Lett."},{"key":"10.1016\/j.ins.2020.05.127_b0155","unstructured":"M. Mirza, S. Osindero, Conditional generative adversarial nets, arXiv: 1411.1784."},{"key":"10.1016\/j.ins.2020.05.127_b0160","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevA.98.032309","article-title":"Quantum circuit learning","volume":"98","author":"Mitarai","year":"2018","journal-title":"Phys. Rev. A"},{"key":"10.1016\/j.ins.2020.05.127_b0165","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevLett.118.190503","article-title":"Inductive supervised quantum learning","volume":"118","author":"Monr\u00e0s","year":"2017","journal-title":"Phys. Rev. Lett."},{"key":"10.1016\/j.ins.2020.05.127_b0170","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1016\/S0020-0255(00)00055-4","article-title":"Quantum artificial neural network architectures and components","volume":"128","author":"Narayanan","year":"2000","journal-title":"Inform. Sci."},{"year":"2000","series-title":"Quantum Computation and Quantum Information","author":"Nielsen","key":"10.1016\/j.ins.2020.05.127_b0175"},{"key":"10.1016\/j.ins.2020.05.127_b0180","unstructured":"A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, arXiv: 1511.06434."},{"key":"10.1016\/j.ins.2020.05.127_b0185","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevLett.113.130503","article-title":"Quantum support vector machine for big data classification","volume":"113","author":"Rebentrost","year":"2014","journal-title":"Phys. Rev. Lett."},{"key":"10.1016\/j.ins.2020.05.127_b0190","doi-asserted-by":"crossref","DOI":"10.1088\/2058-9565\/aa8072","article-title":"Quantum autoencoders for efficient compression of quantum data","volume":"2","author":"Romero","year":"2017","journal-title":"Quantum Sci. Technol."},{"key":"10.1016\/j.ins.2020.05.127_b0195","unstructured":"M. Schuld, A. Bocharov, K. Svore, N. Wiebe, Circuit-centric quantum classifiers, arXiv: 1804.00633."},{"key":"10.1016\/j.ins.2020.05.127_b0200","unstructured":"H.Z. Situ, Z.M. He, Y.Y. Wang, L.Z. Li, S.G. Zheng, Quantum generative adversarial network for discrete data, arXiv: 1807.01235."},{"key":"10.1016\/j.ins.2020.05.127_b0205","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1038\/s41534-017-0032-4","article-title":"Quantum generalisation of feedforward neural networks","volume":"3","author":"Wan","year":"2017","journal-title":"NPJ Quantum Information"},{"key":"10.1016\/j.ins.2020.05.127_b0210","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevLett.109.050505","article-title":"Quantum algorithm for data fitting","volume":"109","author":"Wiebe","year":"2012","journal-title":"Phys. Rev. Lett."},{"key":"10.1016\/j.ins.2020.05.127_b0215","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevA.94.042311","article-title":"Quantum algorithm for association rules mining","volume":"94","author":"Yu","year":"2016","journal-title":"Phys. Rev. A"},{"key":"10.1016\/j.ins.2020.05.127_b0220","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevA.99.022301","article-title":"Quantum algorithm for visual tracking","volume":"99","author":"Yu","year":"2019","journal-title":"Phys. Rev. A"},{"key":"10.1016\/j.ins.2020.05.127_b0225","unstructured":"J.F. Zeng, Y.F. Wu, J.G. Liu, L. Wang, J.P. Hu, Learning and inference on generative adversarial quantum circuits, arXiv: 1808.03425."},{"key":"10.1016\/j.ins.2020.05.127_b0230","unstructured":"IBM Quantum Experience: http:\/\/www.research.ibm.com\/ibm-q\/."},{"key":"10.1016\/j.ins.2020.05.127_b0235","unstructured":"https:\/\/pytorch.org\/."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025520305545?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025520305545?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,12,13]],"date-time":"2020-12-13T04:17:37Z","timestamp":1607833057000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025520305545"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10]]},"references-count":47,"alternative-id":["S0020025520305545"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2020.05.127","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2020,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Quantum generative adversarial network for generating discrete distribution","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2020.05.127","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}