{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T17:03:19Z","timestamp":1742403799533,"version":"3.37.3"},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,10,1]],"date-time":"2020-10-01T00:00:00Z","timestamp":1601510400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61671041","61806119","61101153","61761136008"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2020,10]]},"DOI":"10.1016\/j.ins.2020.05.016","type":"journal-article","created":{"date-parts":[[2020,5,15]],"date-time":"2020-05-15T20:38:05Z","timestamp":1589575085000},"page":"25-52","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["Adaptive online data-driven closed-loop parameter control strategy for swarm intelligence algorithm"],"prefix":"10.1016","volume":"536","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-9455-4597","authenticated-orcid":false,"given":"Hui","family":"Lu","sequence":"first","affiliation":[]},{"given":"Yaxian","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5129-995X","authenticated-orcid":false,"given":"Shi","family":"Cheng","sequence":"additional","affiliation":[]},{"given":"Yuhui","family":"Shi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2020.05.016_b0005","doi-asserted-by":"crossref","first-page":"2567","DOI":"10.1080\/02331934.2013.836651","article-title":"An improved evolution strategy with adaptive population size","volume":"64","author":"Ahrari","year":"2015","journal-title":"Optimization"},{"key":"10.1016\/j.ins.2020.05.016_b0010","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1016\/0165-1684(93)90017-5","article-title":"Two-dimensional fft algorithms on hypercube and mesh machines","volume":"30","author":"Angelopoulos","year":"1993","journal-title":"Signal Process."},{"key":"10.1016\/j.ins.2020.05.016_b0015","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.swevo.2015.09.001","article-title":"Opposition-based magnetic optimization algorithm with parameter adaptation strategy","volume":"26","author":"Aziz","year":"2016","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.ins.2020.05.016_b0020","doi-asserted-by":"crossref","unstructured":"J. Barraza, P. Melin, F. Valdez, C.I. Gonzalez, Fuzzy fwa with dynamic adaptation of parameters (2016) 4053\u20134060.https:\/\/doi.org\/10.1109\/CEC.2016.7744304.","DOI":"10.1109\/CEC.2016.7744304"},{"key":"10.1016\/j.ins.2020.05.016_b0025","doi-asserted-by":"crossref","unstructured":"T. Bartz-Beielstein, C.W.G. Lasarczyk, M. Preuss, Sequential parameter optimization, in: 2005 IEEE Congress on Evolutionary Computation, 2005, pp. 773\u2013780.https:\/\/doi.org\/10.1109\/CEC.2005.1554761.","DOI":"10.1109\/CEC.2005.1554761"},{"key":"10.1016\/j.ins.2020.05.016_b0030","doi-asserted-by":"crossref","unstructured":"R. Brown, D. Ashlock, Parameter tuning of a peak fitting algorithm with an evolved experimental design, 2019, pp. 2378\u20132385.https:\/\/doi.org\/10.1109\/CEC.2019.8789963.","DOI":"10.1109\/CEC.2019.8789963"},{"key":"10.1016\/j.ins.2020.05.016_b0035","doi-asserted-by":"crossref","first-page":"476","DOI":"10.1016\/j.ins.2017.10.032","article-title":"A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design","volume":"460\u2013461","author":"Castillo","year":"2018","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2020.05.016_b0040","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.asoc.2014.12.002","article-title":"A new approach for dynamic fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robot","volume":"28","author":"Castillo","year":"2015","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2020.05.016_b0045","doi-asserted-by":"crossref","first-page":"859","DOI":"10.1016\/j.cor.2004.08.012","article-title":"Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization","volume":"33","author":"Chatterjee","year":"2006","journal-title":"Comput. Oper. Res."},{"key":"10.1016\/j.ins.2020.05.016_b0050","doi-asserted-by":"crossref","unstructured":"C.A. Coello Coello, M.S. Lechuga, Mopso: a proposal for multiple objective particle swarm optimization, in: Proceedings of the 2002 Congress on Evolutionary Computation. CEC\u201902 (Cat. No.02TH8600), 2002, pp. 1051\u20131056.https:\/\/doi.org\/10.1109\/CEC.2002.1004388.","DOI":"10.1109\/CEC.2002.1004388"},{"key":"10.1016\/j.ins.2020.05.016_b0055","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s40747-016-0010-z","article-title":"Bayesian network as an adaptive parameter setting approach for genetic algorithms","volume":"2","author":"Corriveau","year":"2016","journal-title":"Complex Intell. Syst."},{"key":"10.1016\/j.ins.2020.05.016_b0060","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.mechatronics.2018.10.004","article-title":"Tuning guidelines for fractional order pid controllers: rules of thumb","volume":"56","author":"Dastjerdi","year":"2018","journal-title":"Mechatronics"},{"key":"10.1016\/j.ins.2020.05.016_b0065","series-title":"Parallel Problem Solving from Nature \u2013 PPSN VIII","first-page":"41","article-title":"Evolutionary algorithms with on-the-fly population size adjustment","author":"Eiben","year":"2004"},{"key":"10.1016\/j.ins.2020.05.016_b0070","series-title":"Parallel Problem Solving from Nature \u2013 PPSN IX","first-page":"900","article-title":"Is self-adaptation of selection pressure and population size possible? \u2013 a case study","author":"Eiben","year":"2006"},{"key":"10.1016\/j.ins.2020.05.016_b0075","series-title":"2018 IEEE Congress on Evolutionary Computation (CEC)","article-title":"Dendritic cell algorithm with optimised parameters using genetic algorithm","author":"Elisa","year":"2018"},{"key":"10.1016\/j.ins.2020.05.016_b0080","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1016\/j.ins.2015.04.006","article-title":"Bare bones artificial bee colony algorithm with parameter adaptation and fitness-based neighborhood","volume":"316","author":"Gao","year":"2015","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2020.05.016_b0085","doi-asserted-by":"crossref","unstructured":"K. Harrison, B. Ombuki-Berman, A. Engelbrecht, Optimal parameter regions for particle swarm optimization algorithms, in: 2017 IEEE Congress on Evolutionary Computation (CEC), 2017, pp. 349\u2013356.https:\/\/doi.org\/10.1109\/CEC.2017.7969333.","DOI":"10.1109\/CEC.2017.7969333"},{"key":"10.1016\/j.ins.2020.05.016_b0090","doi-asserted-by":"crossref","unstructured":"K.R. Harrison, B.M. Ombuki-Berman, A.P. Engelbrecht, The parameter configuration landscape: a case study on particle swarm optimization, 2019, pp. 808\u2013814.https:\/\/doi.org\/10.1109\/CEC.2019.8790242.","DOI":"10.1109\/CEC.2019.8790242"},{"key":"10.1016\/j.ins.2020.05.016_b0095","doi-asserted-by":"crossref","first-page":"604","DOI":"10.1016\/j.ifacol.2018.06.162","article-title":"Pid controller design for load frequency control: Past, present and future challenges","volume":"51","author":"Hote","year":"2018","journal-title":"IFAC-PapersOnLine"},{"key":"10.1016\/j.ins.2020.05.016_b0100","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1007\/s10710-010-9105-2","article-title":"Variable population size and evolution acceleration: a case study with a parallel evolutionary algorithm","volume":"11","author":"Hu","year":"2010","journal-title":"Genet. Program Evolvable Mach."},{"key":"10.1016\/j.ins.2020.05.016_b0105","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1002\/tee.20078","article-title":"Dynamic parameter tuning of particle swarm optimization","volume":"1","author":"Iwasaki","year":"2006","journal-title":"IEEE Trans. Electr. Electron. Eng."},{"key":"10.1016\/j.ins.2020.05.016_b0110","series-title":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","first-page":"1319","article-title":"Generic parameter control with reinforcement learning","author":"Karafotias","year":"2014"},{"key":"10.1016\/j.ins.2020.05.016_b0115","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1109\/TEVC.2014.2308294","article-title":"Parameter control in evolutionary algorithms: trends and challenges","volume":"19","author":"Karafotias","year":"2015","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.ins.2020.05.016_b0120","doi-asserted-by":"crossref","unstructured":"A. Kattan, M. Arif, Pso based on surrogate modeling as meta-search to optimise evolutionary algorithms parameters, in: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation (GECCO 2012), ACM, 2012, pp. 401\u2013408.https:\/\/doi.org\/10.1145\/2330163.2330221.","DOI":"10.1145\/2330163.2330221"},{"key":"10.1016\/j.ins.2020.05.016_b0125","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1109\/TEVC.2005.860765","article-title":"A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance","volume":"10","author":"Koumousis","year":"2006","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.ins.2020.05.016_b0130","doi-asserted-by":"crossref","first-page":"3063","DOI":"10.1016\/j.asoc.2012.05.008","article-title":"Parameter control system of evolutionary algorithm that is aided by the entire search history","volume":"12","author":"Leung","year":"2012","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2020.05.016_b0135","doi-asserted-by":"crossref","first-page":"831","DOI":"10.1016\/j.cie.2017.06.006","article-title":"Particle swarm optimization with fitness adjustment parameters","volume":"113","author":"Li","year":"2017","journal-title":"Comput. Ind. Eng."},{"key":"10.1016\/j.ins.2020.05.016_b0140","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.ins.2014.11.042","article-title":"Modified cuckoo search algorithm with self adaptive parameter method","volume":"298","author":"Li","year":"2015","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2020.05.016_b0145","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1016\/j.ins.2015.12.022","article-title":"Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm","volume":"339","author":"Lin","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2020.05.016_b0150","doi-asserted-by":"crossref","unstructured":"Y. Liu, H. Lu, S. Cheng, Y. Shi, An adaptive online parameter control algorithm for particle swarm optimization based on reinforcement learning, 2019, pp. 815\u2013822.https:\/\/doi.org\/10.1109\/CEC.2019.8790035.","DOI":"10.1109\/CEC.2019.8790035"},{"key":"10.1016\/j.ins.2020.05.016_b0155","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1016\/j.asoc.2016.11.041","article-title":"Measures in the time and frequency domains for fitness landscape analysis of dynamic optimization problems","volume":"51","author":"Lu","year":"2017","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2020.05.016_b0160","doi-asserted-by":"crossref","first-page":"809","DOI":"10.1016\/j.ejor.2018.01.051","article-title":"Analysis of the similarities and differences of job-based scheduling problems","volume":"270","author":"Lu","year":"2018","journal-title":"Eur. J. Oper. Res."},{"key":"10.1016\/j.ins.2020.05.016_b0165","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1162\/10636560152642878","article-title":"Empirical modelling of genetic algorithms","volume":"9","author":"Myers","year":"2001","journal-title":"Evol. Comput."},{"key":"10.1016\/j.ins.2020.05.016_b0170","doi-asserted-by":"crossref","unstructured":"V. Nannen, A.E. Eiben, Efficient relevance estimation and value calibration of evolutionary algorithm parameters, in: 2007 IEEE Congress on Evolutionary Computation, 2007, pp. 103\u2013110.https:\/\/doi.org\/10.1109\/CEC.2007.4424460.","DOI":"10.1109\/CEC.2007.4424460"},{"key":"10.1016\/j.ins.2020.05.016_b0175","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.asoc.2016.12.015","article-title":"Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems","volume":"53","author":"Olivas","year":"2017","journal-title":"Appl. Soft Comput. J."},{"key":"10.1016\/j.ins.2020.05.016_b0180","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.swevo.2015.08.003","article-title":"A study of the classical differential evolution control parameters","volume":"26","author":"Penunuri","year":"2015","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.ins.2020.05.016_b0185","doi-asserted-by":"crossref","DOI":"10.1007\/s11721-007-0002-0","article-title":"Particle swarm optimization: an overview","volume":"1","author":"Poli","year":"2007","journal-title":"Swarm Intell."},{"key":"10.1016\/j.ins.2020.05.016_b0190","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1109\/TEVC.2004.826071","article-title":"Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients","volume":"8","author":"Ratnaweera","year":"2004","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.ins.2020.05.016_b0195","doi-asserted-by":"crossref","unstructured":"N. Riquelme, C. Von L\u00fccken, B. Baran, Performance metrics in multi-objective optimization, in: 2015 Latin American Computing Conference (CLEI), 2015, pp. 1\u201311.https:\/\/doi.org\/10.1109\/CLEI.2015.7360024.","DOI":"10.1109\/CLEI.2015.7360024"},{"key":"10.1016\/j.ins.2020.05.016_b0200","series-title":"Proceedings of the 1998 Congress on Evolutionary Computation (CEC 1998)","first-page":"69","article-title":"A modified particle swarm optimizer","author":"Shi","year":"1998"},{"key":"10.1016\/j.ins.2020.05.016_b0205","article-title":"Dynamic parameter adaptation in metaheuristics using gradient approximation and line search","volume":"74","author":"Tatsis","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2020.05.016_b0210","doi-asserted-by":"crossref","first-page":"673","DOI":"10.1007\/s00500-005-0537-1","article-title":"Exploring dynamic self-adaptive populations in differential evolution","volume":"10","author":"Teo","year":"2006","journal-title":"Soft. Comput."},{"key":"10.1016\/j.ins.2020.05.016_b0215","series-title":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","first-page":"1343","article-title":"Analysis of evolutionary algorithms using multi-objective parameter tuning","author":"Ugolotti","year":"2014"},{"key":"10.1016\/j.ins.2020.05.016_b0220","doi-asserted-by":"crossref","first-page":"446","DOI":"10.1016\/j.ins.2016.08.066","article-title":"Parameter tuning with chess rating system (crs-tuning) for meta-heuristic algorithms","volume":"372","author":"Vecek","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2020.05.016_b0225","doi-asserted-by":"crossref","DOI":"10.1016\/j.swevo.2018.10.013","article-title":"Distance based parameter adaptation for success-history based differential evolution","volume":"50","author":"Viktorin","year":"2019","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.ins.2020.05.016_b0230","doi-asserted-by":"crossref","unstructured":"A. Wagdy, A. Hadi, A. Fattouh, K. Jambi, Lshade with semi-parameter adaptation hybrid with cma-es for solving cec 2017 benchmark problems, in: 2017 IEEE Congress on Evolutionary Computation (CEC), 2017, pp. 145\u2013152.https:\/\/doi.org\/10.1109\/CEC.2017.7969307.","DOI":"10.1109\/CEC.2017.7969307"},{"key":"10.1016\/j.ins.2020.05.016_b0235","doi-asserted-by":"crossref","unstructured":"H. Wang, Q. Geng, Z. Qiao, Parameter tuning of particle swarm optimization by using taguchi method and its application to motor design, in: 2014 4th IEEE International Conference on Information Science and Technology, 2014, pp. 722\u2013726.https:\/\/doi.org\/10.1109\/ICIST.2014.6920579.","DOI":"10.1109\/ICIST.2014.6920579"},{"key":"10.1016\/j.ins.2020.05.016_b0240","first-page":"292","article-title":"Sparse least squares support vector machines based on meanshift clustering method","volume":"51","author":"Wang","year":"2018","journal-title":"IFAC-PapersOnLine"},{"key":"10.1016\/j.ins.2020.05.016_b0245","first-page":"4560","article-title":"An adaptive parameter tuning of particle swarm optimization algorithm","volume":"219","author":"Xu","year":"2013","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.ins.2020.05.016_b0250","doi-asserted-by":"crossref","unstructured":"W. Zheng, J. Sun, H. Li, An adaptive parameter tuning strategy for many-objective evolutionary algorithm, 2019, pp. 1718\u20131725.https:\/\/doi.org\/10.1109\/CEC.2019.8790248.","DOI":"10.1109\/CEC.2019.8790248"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002002552030414X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002002552030414X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,7,25]],"date-time":"2020-07-25T20:05:21Z","timestamp":1595707521000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S002002552030414X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10]]},"references-count":50,"alternative-id":["S002002552030414X"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2020.05.016","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2020,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Adaptive online data-driven closed-loop parameter control strategy for swarm intelligence algorithm","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2020.05.016","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}