{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:39:31Z","timestamp":1740112771863,"version":"3.37.3"},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,10,1]],"date-time":"2020-10-01T00:00:00Z","timestamp":1601510400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100010838","name":"Guangdong Planning Office of Philosophy and Social Science","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100010838","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003453","name":"Natural Science Foundation of Guangdong Province","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003453","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010226","name":"Department of Education of Guangdong Province","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100010226","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013139","name":"Humanities and Social Science Fund of Ministry of Education of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013139","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2020,10]]},"DOI":"10.1016\/j.ins.2020.03.092","type":"journal-article","created":{"date-parts":[[2020,5,27]],"date-time":"2020-05-27T00:21:31Z","timestamp":1590538891000},"page":"431-453","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"C","title":["NEC: A nested equivalence class-based dependency calculation approach for fast feature selection using rough set theory"],"prefix":"10.1016","volume":"536","author":[{"given":"Jie","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Jia-ming","family":"Liang","sequence":"additional","affiliation":[]},{"given":"Zhen-ning","family":"Dong","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3315-4447","authenticated-orcid":false,"given":"De-yu","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Zhen","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2020.03.092_bib0001","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.ins.2019.05.072","article-title":"Feature selection using neighborhood entropy-based uncertainty measures for gene expression data classification","volume":"502","author":"Sun","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2020.03.092_bib0002","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1016\/j.ins.2019.02.021","article-title":"Memetic feature selection for multilabel text categorization using label frequency difference","volume":"485","author":"Lee","year":"2019","journal-title":"Inf. Sci."},{"year":"1961","series-title":"Adaptive Control processes: a Guided Tour Princeton University Press","author":"Bellman","key":"10.1016\/j.ins.2020.03.092_bib0003"},{"year":"2009","series-title":"Encyclopedia of Database Systems","author":"Liu","key":"10.1016\/j.ins.2020.03.092_bib0004"},{"key":"10.1016\/j.ins.2020.03.092_bib0005","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1016\/j.patcog.2018.04.009","article-title":"A heuristic based dependency calculation technique for rough set theory","volume":"81","author":"Raza","year":"2018","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.ins.2020.03.092_bib0006","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.ijar.2017.10.012","article-title":"Feature selection using rough set-based direct dependency calculation by avoiding the positive region","volume":"92","author":"Raza","year":"2018","journal-title":"Int. J. Approx. Reason."},{"key":"10.1016\/j.ins.2020.03.092_bib0007","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.ins.2016.01.044","article-title":"An incremental dependency calculation technique for feature selection using rough sets","volume":"343","author":"Raza","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2020.03.092_bib0008","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.knosys.2015.06.013","article-title":"Compacted decision tables based attribute reduction","volume":"86","author":"Wei","year":"2015","journal-title":"Knowl.-Based Syst."},{"issue":"1","key":"10.1016\/j.ins.2020.03.092_bib0009","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.cmpb.2013.10.007","article-title":"Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis","volume":"113","author":"Inbarani","year":"2014","journal-title":"Comput. Meth. Prog. Bio."},{"key":"10.1016\/j.ins.2020.03.092_bib0010","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1016\/j.patcog.2016.08.011","article-title":"An efficient semi-supervised representatives feature selection algorithm based on information theory","volume":"61","author":"Wang","year":"2017","journal-title":"Pattern Recogn."},{"issue":"4","key":"10.1016\/j.ins.2020.03.092_bib0011","doi-asserted-by":"crossref","first-page":"944","DOI":"10.1109\/TNNLS.2017.2650978","article-title":"Adaptive Unsupervised Feature Selection With Structure Regularization","volume":"29","author":"Luo","year":"2018","journal-title":"IEEE T Neur. Net. Lear"},{"key":"10.1016\/j.ins.2020.03.092_bib0012","series-title":"Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence","first-page":"1302","article-title":"Unsupervised Feature Selection with Structured Graph Optimization","author":"Feiping Nie","year":"2016"},{"key":"10.1016\/j.ins.2020.03.092_bib0013","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.ins.2012.12.001","article-title":"Unsupervised fuzzy-rough set-based dimensionality reduction","volume":"229","author":"Mac Parthal\u00e1in","year":"2013","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2020.03.092_bib0014","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1016\/j.patcog.2019.04.020","article-title":"Nonnegative Laplacian embedding guided subspace learning for unsupervised feature selection","volume":"93","author":"Zhang","year":"2019","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.ins.2020.03.092_bib0015","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1016\/j.neucom.2019.01.017","article-title":"A new multi-objective wrapper method for feature selection \u2013 accuracy and stability analysis for BCI","volume":"333","author":"Gonz\u00e1lez","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2020.03.092_bib0016","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1016\/j.asoc.2017.11.006","article-title":"Whale optimization approaches for wrapper feature selection","volume":"62","author":"Mafarja","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2020.03.092_bib0017","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.neucom.2016.07.080","article-title":"A hybrid feature selection algorithm for gene expression data classification","volume":"256","author":"Lu","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2020.03.092_bib0018","doi-asserted-by":"crossref","first-page":"922","DOI":"10.1016\/j.asoc.2015.10.037","article-title":"Two hybrid wrapper-filter feature selection algorithms applied to high-dimensional microarray experiments","volume":"38","author":"Apolloni","year":"2016","journal-title":"Appl. Soft Comput."},{"issue":"9","key":"10.1016\/j.ins.2020.03.092_bib0019","doi-asserted-by":"crossref","first-page":"597","DOI":"10.1016\/j.artint.2010.04.018","article-title":"Positive approximation: an accelerator for attribute reduction in rough set theory","volume":"174","author":"Qian","year":"2010","journal-title":"Artif. Intell."},{"key":"10.1016\/j.ins.2020.03.092_bib0020","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.patrec.2014.10.007","article-title":"A Hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation","volume":"52","author":"Banka","year":"2015","journal-title":"Pattern Recogn. Lett."},{"issue":"5","key":"10.1016\/j.ins.2020.03.092_bib0021","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1007\/BF01001956","article-title":"Rough sets","volume":"11","author":"Pawlak","year":"1982","journal-title":"Int. J. Comput. Inf. Sci."},{"key":"10.1016\/j.ins.2020.03.092_bib0022","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.ijar.2015.01.006","article-title":"Matrix-based set approximations and reductions in covering decision information systems","volume":"59","author":"Tan","year":"2015","journal-title":"Int. J. Approx. Reason."},{"key":"10.1016\/j.ins.2020.03.092_bib0023","first-page":"1","article-title":"Accelerating incremental attribute reduction algorithm by compacting a decision table","author":"Wei","year":"2018","journal-title":"Int. J. Mach. Learn. Cyb."},{"key":"10.1016\/j.ins.2020.03.092_bib0024","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2016.10.041","article-title":"Generalized dominance rough set models for the dominance intuitionistic fuzzy information systems","volume":"378","author":"Zhang","year":"2017","journal-title":"Inf. Sci."},{"issue":"16","key":"10.1016\/j.ins.2020.03.092_bib0025","doi-asserted-by":"crossref","first-page":"2774","DOI":"10.1016\/j.ins.2009.04.002","article-title":"A fast approach to attribute reduction in incomplete decision systems with tolerance relation-based rough sets","volume":"179","author":"Meng","year":"2009","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2020.03.092_bib0026","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2015.06.025","article-title":"Towards scalable fuzzy\u2013rough feature selection","volume":"323","author":"Jensen","year":"2015","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2020.03.092_bib0027","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.ins.2013.07.033","article-title":"Finding rough and fuzzy-rough set reducts with SAT","volume":"255","author":"Jensen","year":"2014","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2020.03.092_bib0028","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.ins.2014.07.029","article-title":"Implementing algorithms of rough set theory and fuzzy rough set theory in the R package \u201cRoughSets\u201d","volume":"287","author":"Riza","year":"2014","journal-title":"Inf. Sci."},{"issue":"1","key":"10.1016\/j.ins.2020.03.092_bib0029","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.ins.2011.09.027","article-title":"Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection","volume":"186","author":"Derrac","year":"2012","journal-title":"Inf. Sci."},{"issue":"17","key":"10.1016\/j.ins.2020.03.092_bib0030","doi-asserted-by":"crossref","first-page":"3500","DOI":"10.1016\/j.ins.2007.02.041","article-title":"A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets","volume":"177","author":"Degang","year":"2007","journal-title":"Inf. Sci."},{"issue":"18","key":"10.1016\/j.ins.2020.03.092_bib0031","doi-asserted-by":"crossref","first-page":"3577","DOI":"10.1016\/j.ins.2008.05.024","article-title":"Neighborhood rough set based heterogeneous feature subset selection","volume":"178","author":"Hu","year":"2008","journal-title":"Inf. Sci."},{"year":"2008","series-title":"Computational Intelligence and Feature Selection: Rough and Fuzzy Approaches","key":"10.1016\/j.ins.2020.03.092_bib0032"},{"issue":"2","key":"10.1016\/j.ins.2020.03.092_bib0033","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1111\/j.1467-8640.1995.tb00035.x","article-title":"Learning in relational databases: a rough set approach","volume":"11","author":"Hu","year":"1995","journal-title":"Comput. Intell.-Us"},{"key":"10.1016\/j.ins.2020.03.092_bib0034","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1016\/j.asoc.2018.01.040","article-title":"A group incremental feature selection for classification using rough set theory based genetic algorithm","volume":"65","author":"Das","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2020.03.092_bib0035","doi-asserted-by":"crossref","first-page":"554","DOI":"10.1016\/j.neucom.2017.08.050","article-title":"A Genetic Programming approach for feature selection in highly dimensional skewed data","volume":"273","author":"Viegas","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2020.03.092_bib0036","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.knosys.2015.02.002","article-title":"Finding rough set reducts with fish swarm algorithm","volume":"81","author":"Chen","year":"2015","journal-title":"Knowl.-Based Syst."},{"issue":"8","key":"10.1016\/j.ins.2020.03.092_bib0037","doi-asserted-by":"crossref","first-page":"1859","DOI":"10.1007\/s00521-015-1840-0","article-title":"A novel hybrid feature selection method based on rough set and improved harmony search","volume":"26","author":"Inbarani","year":"2015","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.ins.2020.03.092_bib0038","doi-asserted-by":"crossref","first-page":"622","DOI":"10.1016\/j.swevo.2018.08.004","article-title":"An artificial bee colony algorithm with a Modified Choice Function for the traveling salesman problem","volume":"44","author":"Choong","year":"2019","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.ins.2020.03.092_bib0039","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.fss.2014.04.029","article-title":"Fuzzy-rough feature selection accelerator","volume":"258","author":"Qian","year":"2015","journal-title":"Fuzzy Set Syst."},{"issue":"6","key":"10.1016\/j.ins.2020.03.092_bib0040","doi-asserted-by":"crossref","first-page":"912","DOI":"10.1016\/j.ijar.2012.02.004","article-title":"An efficient rough feature selection algorithm with a multi-granulation view","volume":"53","author":"Liang","year":"2012","journal-title":"Int. J. Approx. Reason."},{"key":"10.1016\/j.ins.2020.03.092_bib0041","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.ins.2017.05.003","article-title":"An incremental attribute reduction approach based on knowledge granularity with a multi-granulation view","volume":"411","author":"Jing","year":"2017","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2020.03.092_bib0042","doi-asserted-by":"crossref","first-page":"1020","DOI":"10.1016\/j.asoc.2017.10.006","article-title":"A parallel rough set based dependency calculation method for efficient feature selection","volume":"71","author":"Raza","year":"2018","journal-title":"Appl. Soft. Comput."},{"issue":"11","key":"10.1016\/j.ins.2020.03.092_bib0043","doi-asserted-by":"crossref","first-page":"4773","DOI":"10.1007\/s11227-017-2046-2","article-title":"Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering","volume":"73","author":"Abualigah","year":"2017","journal-title":"J. Supercomput."},{"key":"10.1016\/j.ins.2020.03.092_bib0044","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.applthermaleng.2017.08.164","article-title":"Optimization of a heliostat field layout using hybrid PSO-GA algorithm","volume":"128","author":"Li","year":"2018","journal-title":"Appl. Therm. Eng."},{"key":"10.1016\/j.ins.2020.03.092_bib0045","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.asoc.2019.01.051","article-title":"Mountain railway alignment optimization using stepwise & hybrid particle swarm optimization incorporating genetic operators","volume":"78","author":"Pu","year":"2019","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2020.03.092_bib0046","doi-asserted-by":"crossref","first-page":"336","DOI":"10.1007\/978-3-642-16248-0_49","article-title":"Parallel reducts based on attribute significance, rough set and knowledge technology","volume":"6401","author":"Deng","year":"2010","journal-title":"Lect. Not. Comput. Sci."},{"issue":"8","key":"10.1016\/j.ins.2020.03.092_bib0047","doi-asserted-by":"crossref","first-page":"1754","DOI":"10.1016\/j.camwa.2007.08.031","article-title":"Converse approximation and rule extraction from decision tables in rough set theory","volume":"55","author":"Qian","year":"2008","journal-title":"Comput. Math. Appl."},{"issue":"1\u20132","key":"10.1016\/j.ins.2020.03.092_bib0048","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/S0004-3702(03)00079-1","article-title":"Consistency-based search in feature selection","volume":"151","author":"Dash","year":"2003","journal-title":"Artif. Intell."},{"issue":"1","key":"10.1016\/j.ins.2020.03.092_bib0049","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/S0004-3702(98)00090-3","article-title":"Rough computational methods for information systems","volume":"105","author":"Guan","year":"1998","journal-title":"Artif. Intell."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025520302723?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025520302723?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,6,23]],"date-time":"2022-06-23T07:39:36Z","timestamp":1655969976000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025520302723"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10]]},"references-count":49,"alternative-id":["S0020025520302723"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2020.03.092","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2020,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"NEC: A nested equivalence class-based dependency calculation approach for fast feature selection using rough set theory","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2020.03.092","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}